
1 Introduction
On January 3, 2018, a new class of side-channel attacks was disclosed. These
side-channel attacks are novel in their use of speculative execution and
exploitation of various caches in high-performance processors. These attacks
use the fact that the speculative execution has side effects and these side
effects allow malicious code to find out the contents of memory regions that
the malicious code is not authorized to access.

The vulnerabilities were registered with National Institute of Standards and
Technology (NIST), a non-regulatory agency within the U.S. Department of Commerce, as CVE-2017-5753 (Spectre variant 1),
CVE-2017-5715 (Spectre variant 2), and CVE-5754 (Meltdown). Additional derivations of Spectre and Meltdown, also based on
speculative execution side effects, have been discovered since the major January 3, 2018 disclosure.

In this paper, we present the mitigations for Spectre variant 1 and Spectre variant 2 for NXP PowerPC processors. The NXP
PowerPC processors are not vulnerable to the Meltdown attack, Spectre variant 1.1/1.2, or Spectre variant 4. However, the new
class of side-channel attacks has opened the door for more research and it is expected that new vulnerabilities or variations of
the existing ones will be disclosed in the future.

2 Spectre vulnerability
To exploit Spectre, it is required that specially-crafted software be executed on the target system to influence the victim behavior
and to extract the secrets. If the system is closed and does not allow running any untrusted code, then the vulnerability is low.
Other layers of security should protect against malware in this case.

Also, in case of a system where all the tasks are sharing the same address space, Spectre does not apply because any task can
already read the data from any other task.

The Spectre vulnerability comprises a series of vulnerabilities, some of them being just variations of the original ones: Spectre
variant 1, Spectre variant 2, Spectre variant 4, Spectre variant 1.1/1.2, Spectre RSB. In certain cases, mitigations for one variant
apply to other variants as well. The NXP Power Architecture processors are vulnerable to Spectre variant 1 and Spectre variant
2. The sections that follow describe the proposed mitigations for the affected processors.

3 Spectre variant 1 (CVE-2017-5753)
The Spectre variant 1 vulnerability, known as bounds check bypass, takes advantage of speculative execution of the instructions
that follow a conditional branch.

Let us take the following code block as an example:

 if (untrusted_array_index < array_size)
 {
 value = array1[untrusted_array_index] //value is used for other memory accesses
 }

At first glance, there is nothing wrong with the above code block; the program is written correctly. In theory, there is no way for
the array to be accessed out of bounds.

Contents

1 Introduction.. 1

2 Spectre vulnerability.............................. 1

3 Spectre variant 1 (CVE-2017-5753)...... 1

4 Spectre variant 2 (CVE-2017-5715)...... 4

5 Related resources..................................5

6 Revision history..................................... 5

SPECTREPPCWP
Speculative Execution Vulnerabilities and Mitigations on NXP
PowerPC Processors
Rev. 0 — 08/2019 White Paper

To speed up processing, modern CPUs include a feature, called branch prediction, which detects in advance whether the branch
is taken or not.

The Spectre variant 1 attack exploits the branch prediction and speculative execution of instructions after a branch. When
array_size is not in the cache (while it is getting loaded), the processor can execute instructions speculatively. Functionally, this
is correct. When the outcome of the branch is successfully predicted, the speculatively-executed instructions will be committed.

If the branch was mispredicted, then the speculatively-executed instructions will be discarded; however, some indirect side effects,
such as CPU cache changes, are not reverted. In the example above, the processor may speculatively execute the instructions
after the branch. If the code uses value to create an address to access a memory location, then the memory location will be
loaded in cache and the attack code can use a cache side channel to learn a few bits of value, though the attack code is not
able to access value directly.

3.1 Software mitigations
Let us extend the example to index a second array using value.

 if (untrusted_array_index < array_size)
 {
 value = array1[untrusted_array_index];
 data = array2[value * 64];
 }

The way the branch predictors work is to learn from the branch history. Therefore, at first, an attacker can use some sane values
for untrusted_array_index to train the branch predictor. The second step will be to use an out of bounds value for
untrusted_array_index. The branch predictor predicts that the branch will be taken (as it was previously trained) and the
instructions after the branch will be speculatively executed.

If array2 was not in the cache, then the attacker can probe all the entries and measure the response time. If the access is quick,
it means that the data was accessed, and value can be inferred.

The above code can be translated into assembly code, as follows:

 lis %r9,array_size@h //r9 – contains the array_size
 lbz %r9,array_size@l(%r9)
 cmplw cr7,%r9,%r3 //if (untrusted_array_index < array_size)
 blelr cr7
 lis %r9,array1@h //the code can be executed speculatively
 addi %r9,%r9,array1@l
 lbzx %r10,%r9,%r3 //value loaded
 lis %r8,array2@h
 addi %r8,%r8,array2@l
 rlwinm %r10,%r10,6,0,25
 lbzx %r10,%r8,%r10 //data loaded

To prevent speculation, we insert a barrier after the branch, as follows:

 lis %r9,array_size@h
 lbz %r9,array_size@l(%r9)
 cmplw cr7,%r9,%r3 //if (array_index < array_size)
 blelr cr7
 isync //barrier
 sync //barrier
 lis %r9,array1@h //the code can be executed speculatively
 addi %r9,%r9,array1@l
 lbzx %r10,%r9,%r3
 lis %r8,array2@h
 addi %r8,%r8,array2@l

NXP Semiconductors
Spectre variant 1 (CVE-2017-5753)

Speculative Execution Vulnerabilities and Mitigations on NXP PowerPC Processors, Rev. 0, 08/2019
White Paper 2 / 7

 rlwinm %r10,%r10,6,0,25
 lbzx %r10,%r8,%r10 //data loaded

The inserted barrier prevents the CPU from speculatively executing the instructions after the branch. The barrier is forcing the
result of the bounds check to resolve in the instruction pipeline.

Adding a barrier in assembly code will prevent speculative execution, but in practice, we will be dealing with C code. In this case,
we can define a barrier function that can be called in the C code:

 static inline void barrier_nospec(void)
 {
 asm("isync;sync" : : : "memory");
 }

The vulnerable example should be rewritten as follows:

 if (untrusted_array_index < array_size)
 {
 barrier_nospec()
 value = array1[untrusted_array_index];
 data = array2[value * 64];
 }

3.2 Mitigations in Linux kernel
Similar to any other software component, Linux kernel may have code that is vulnerable to Spectre variant 1. Currently, the
vulnerable pieces of code in the Linux kernel can be sanitized using one of the following macros:

• array_index_nospec()

• barrier_nospec()

array_index_nospec()

The Linux community has introduced a generic mechanism, a macro, array_index_nospec(), to prevent speculatively accessing
the array out of bounds. The macro always returns a sane value for the untrusted_array_index to be used in the speculation.
The macro needs to be manually inserted in places where the vulnerability exists. Currently, the macro is being used at several
places in the Linux kernel; however, it is an ongoing process to update other vulnerable pieces of code as they are discovered
by the Linux community.

Let us take a short example from the Linux kernel that uses the array_index_nospec mechanism:

 @@ -1397,6 +1398,7 @@ long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user
*arg
 if (idx >= d->nvqs)
 return -ENOBUFS;
+ idx = array_index_nospec(idx, d->nvqs);
 vq = d->vqs[idx];

[drivers/vhost/vhost.c – kernel 5.0]

The idx in the above example is controlled by user space; therefore, the code has a potential of getting exploited using Spectre
variant 1 attack. The code after the bounds check might be executed speculatively, and the solution is to sanitize idx to always
have a value that is within the bounds.

The array_index_nospec() macro is used in situations similar to above to force the array index value to be within the bounds.

NXP Semiconductors
Spectre variant 1 (CVE-2017-5753)

Speculative Execution Vulnerabilities and Mitigations on NXP PowerPC Processors, Rev. 0, 08/2019
White Paper 3 / 7

barrier_nospec()

The barrier_nospec() macro is a barrier that prevents instructions following it from being executed speculatively. In some
situations, the complexity of the code in Linux kernel is higher than just a simple array access. In such a situation,
barrier_nospec() is used instead of array_index_nospec(). Examples in the PowerPC Linux kernel include syscall table
sanitization and copy_from_user() function.

The kernel patches that add support for barrier_nospec implementation were included in kernel 4.19 release (see below). They
were also backported on LTS kernels, 4.14 and 4.9.

 Diana Craciun (6):
 powerpc/64: Disable the speculation barrier from the command line
 powerpc/64: Make stf barrier PPC_BOOK3S_64 specific
 powerpc/64: Make meltdown reporting Book3S 64 specific
 powerpc/fsl: Add barrier_nospec implementation for NXP PowerPC Book3E
 powerpc/fsl: Sanitize the syscall table for NXP PowerPC 32-bit platforms
 Documentation: Add nospectre_v1 parameter

 Michael Ellerman (2):
 powerpc/64: Add CONFIG_PPC_BARRIER_NOSPEC
 powerpc/64: Call setup_barrier_nospec() from setup_arch()

The mitigations are enabled by default; however, the user can disable barrier_nospec using the kernel boot parameter,
nospectre_v1.

In addition, the user can determine if the barrier is enabled by checking the following sysfs entry:

 cat /sys/devices/system/cpu/vulnerabilities/spectre_v1

4 Spectre variant 2 (CVE-2017-5715)
The Spectre variant 2 vulnerability, known as branch target injection, takes advantage of speculative execution of instructions
following an indirect branch. By influencing the indirect branch target, an attacker can make malicious code to be executed
speculatively. Then, the attacker can use a cache side channel to retrieve the data.

To support high-performance execution, branch predictors use the history of the previous branches to predict the branch target.
However, the history is not filtered by the privilege level or process ID, and therefore, an attacker from a different privilege level/
process can mistrain a branch predictor to speculatively execute a gadget.

Let us take an example with two processes:

1. The attacker finds a gadget in the victim address space. The attacker finds the virtual address of the gadget.

2. The attacker performs indirect branches to the gadget address. The indirect branches are performed in the attacker
address space. Because the branch predictor is shared between processes, the attacker can influence the behavior of
the branch predictor in the victim.

3. The victim speculatively executes code at an unintended branch target (the branch predictor was previously trained to
predict this target).

4. The effects of the incorrect speculative execution are eventually reverted; however, caches have side effects that can
be used to leak sensitive data.

4.1 Mitigations in Linux kernel
Mitigations for Spectre variant 2 were implemented in the Linux kernel that protect against the following situations:

• User space process attacking another user space process

• User space process attacking the kernel

• Guest attacking the host (in case of KVM hypervisor)

NXP Semiconductors
Spectre variant 2 (CVE-2017-5715)

Speculative Execution Vulnerabilities and Mitigations on NXP PowerPC Processors, Rev. 0, 08/2019
White Paper 4 / 7

The kernel patches add support for flushing the branch predictor whenever the privilege level changes. This way, any history of
mistraining will be lost.

The patches were included in kernel 5.0 release (see below). They were also backported on LTS kernels, 4.19, 4.14, and 4.9.

 Diana Craciun (11):
 powerpc/fsl: Add infrastructure to fix-up branch predictor flush
 powerpc/fsl: Add macro toflush the branch predictor
 powerpc/fsl: Fix spectre_v2 mitigations reporting
 powerpc/fsl: Emulate SPRN_BUCSR register
 powerpc/fsl: Add nospectre_v2 command line argument
 powerpc/fsl: Flush the branch predictor at each kernel entry (64bit)
 powerpc/fsl: Flush the branch predictor at each kernel entry (32it)
 powerpc/fsl: Flush branch predictor when entering KVM
 powerpc/fsl: Enable runtime patching if nospectre_v2 boot argument is used
 powerpc/fsl: Update Spectre V2 reporting
 powerpc/fsl: Add FSL_PPC_BOOK3E as supported arch for nospectre_v2 boot argument

 Diana Craciun (1):
 powerpc/fsl: Fix warning: orphan section `__btb_flush_fixup'

The mitigations are enabled by default; however, the user can disable the branch predictor flush using the kernel boot parameter,
nospectre_v2.

In addition, the user can determine if the branch predictor flush is enabled by checking the following sysfs entry:

 cat /sys/devices/system/cpu/vulnerabilities/spectre_v2

4.2 Mitigations in other operating systems
Software running under the Linux kernel is protected by the mitigations discussed earlier. However, software running on a different
operating system might be vulnerable. As a possible solution, a mitigation similar to one for Linux kernel can be implemented
that clears the history of the branch predictor when switching between privilege levels.

The branch predictor history can be invalidated by setting BBFI bit in BUCSR register. The branch predictor can be invalidated
and enabled using the following code sequence:

 // Branch prediction
 xor r4,r4,r4 // set r4 to 0
 ori r5,r4,0x0201 // set BBFI and BPEN
 oris r5,r5,0x0140 // set STAC_EN and LS_EN
 mtspr BUCSR,r5 // flash invalidate and enable branch prediction
 isync // synchronize setting of BUCSR

5 Related resources
Following are links to some resources related to the material presented in this paper:

• Spectre and Meltdown Updates for Power ISA Cores

• Spectre Attacks: Exploiting Speculative Execution

• https://meltdownattack.com/

• https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

6 Revision history
The table below summarizes the changes made to this document.

NXP Semiconductors
Related resources

Speculative Execution Vulnerabilities and Mitigations on NXP PowerPC Processors, Rev. 0, 08/2019
White Paper 5 / 7

https://docs.nxp.com/bundle/GUID-805CC0EA-4001-47AD-86CD-4F340751F6B7/page/GUID-17B5D04F-6471-4EC6-BEB9-DE4D0AFA034A.html
https://spectreattack.com/spectre.pdf
https://meltdownattack.com/
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Table 1. Revision history

Revision Date Topic cross-reference Change description

Rev. 0 08/2019 Initial public release

NXP Semiconductors
Revision history

Speculative Execution Vulnerabilities and Mitigations on NXP PowerPC Processors, Rev. 0, 08/2019
White Paper 6 / 7

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, PowerQUICC, QorIQ, and QorIQ Qonverge
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 08/2019
Document identifier: SPECTREPPCWP

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Spectre vulnerability
	3 Spectre variant 1 (CVE-2017-5753)
	3.1 Software mitigations
	3.2 Mitigations in Linux kernel

	4 Spectre variant 2 (CVE-2017-5715)
	4.1 Mitigations in Linux kernel
	4.2 Mitigations in other operating systems

	5 Related resources
	6 Revision history

