
1 Overview
Glow is a machine learning compiler for neural network graphs. It is designed
to optimize the neural network graphs and generate code for various hardware
devices available at https://github.com/pytorch/glow. Glow comes in two
flavors: Just in Time (JIT) and Ahead of Time (AOT) compilations. JIT
compilation is performed at runtime just before the model is executed. AOT
compilation is performed offline and generates an object file (bundle) which is
later linked with the application code.

MCUXpresso Software Development Kit (MCUXpresso SDK) provides a set of
helper functions that allows integration of Glow AOT bundles.

Ensure to see the official Glow documentation for building AOT applications
located at: https://github.com/pytorch/glow/blob/master/docs/AOT.md before
proceeding. However, the eIQ Glow Ahead of Time User Guide provides extra
information regarding the NXP deliverable of the Glow compiler which includes
some extra features and optimizations.

This document describes steps to download, start using Glow AOT, and create
an application that integrates bundles generated using the Glow AOT compiler.

To run the Glow AOT project examples, the following packages must be installed on your system.

• MCUXpresso IDE

• MCUXpresso SDK loaded into MCUXpresso IDE

• A serial connection client like PuTTY or Tera Term

• Python 3.6 with pip package installer

• The Glow AOT compiler which is available for Windows here.

After installing the Glow AOT compiler, you must add the location of the Glow binary tools to the PATH system
environment variable.

2 Deployment
The eIQ Glow AOT is part of the eIQ machine learning software package, which is an optional middleware component
of MCUXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on
mcuxpresso.nxp.com. To include eIQ machine learning into an MCUXpresso SDK package, the eIQ middleware component has
to be selected in the software component selector on the SDK Builder when building a new package. For details, see Figure 1.

Contents

1 Overview... 1
2 Deployment..................................... 1
3 Example applications...................... 5
4 Model compilation........................... 8
4.1 Bundle generation........................8
4.2 Model profiling............................12
4.3 Model tuning.............................. 13
5 Creating the application project.....16
5.1 Bundle API.................................16
5.2 Integrating the bundle................ 17
5.3 Other optimizations....................21
6 Utilities...22
6.1 Model conversion.......................22
6.2 Model visualizer......................... 23
7 Note about the source code in the

document.......................................24
8 Revision history.............................25
Legal information.................................... 26

EIQGLOWAOTUG
eIQ Glow Ahead of Time User Guide
Rev. 6 — 01 June 2022 User Guide

https://github.com/pytorch/glow
https://github.com/pytorch/glow/blob/master/docs/AOT.md
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-for-glow-neural-network-compiler:eIQ-Glow?tab=Design_Tools_Tab
https://mcuxpresso.nxp.com

Figure 1. MCUXpresso SDK Builder software component selector for RT1050/RT1060/RT1064/RT1160/RT1170

Figure 2. MCUXpresso SDK Builder software component selector for RT600

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or imported into the MCUXpresso
IDE. To get familiar with the MCUXpresso SDK folder structure, see the Getting Started with MCUXpresso SDK document.

The package directory structure might look like Figure 3. The eIQ Glow library directories are highlighted in red.

NXP Semiconductors
Deployment

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 2 / 28

Figure 3. MCUXpresso EVKB-IMRT1050 SDK structure

The package directory structure might look like Figure 4. The eIQ Glow library directories are highlighted in red.

Figure 4. MCUXpresso EVKB-IMRT1060 SDK structure

The package directory structure might look like Figure 5. The eIQ Glow library directories are highlighted in red.

Figure 5. MCUXpresso EVKB-IMRT1170 SDK structure

NXP Semiconductors
Deployment

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 3 / 28

The package directory structure might look like Figure 6. The eIQ Glow library directories are highlighted in red.

Figure 6. MCUXpresso MIMXRT1060-EVKB SDK structure

The package directory structure might look like Figure 7. The eIQ Glow library directories are highlighted in red.

Figure 7. MCUXpresso MIMXRT1160-EVK SDK structure

The package directory structure might look like Figure 8. The eIQ Glow library directories are highlighted in red.

Figure 8. MCUXpresso EVK-MIMXRT1064 SDK structure

The package directory structure might look like Figure 9. The eIQ Glow library directories are highlighted in red.

NXP Semiconductors
Deployment

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 4 / 28

Figure 9. MCUXpresso EVKB-MIMXRT685 SDK structure

.

The boards directory contains example application projects for supported toolchains (for the list of supported toolchains, see the
MCUXpresso SDK Release Notes document). The middleware directory contains the eIQ library source codes, pre-compiled
library binaries and example application source codes and data.

Installing the Glow AOT tool on the target machine is out of the scope of this document. It is assumed that the tool
is already installed on the workstation and its location is included in the system path. You can find the Glow AOT
Windows installer here.

 NOTE

3 Example applications
The eIQ Glow AOT is provided with a set of example applications. For details, see Table 1. The applications demonstrate the
usage of the Glow AOT in several use cases.

Table 1. List of example applications

Name Boards Description

glow_cifar10 RT1050/RT1060/RT1064/RT1160/
RT1170

CIFAR-10 classification of 32x32 RGB
pixel images into 10 categories
using a small convolutional neural
network (CNN).

glow_lenet_mnist RT1050/RT1060/RT1064/RT1160/
RT1170

Performs handwritten digit classification
using the LeNet neural network trained
on MNIST database.

glow_cifar10 RT600 CIFAR-10 classification of 32x32 RGB
pixel images into 10 categories using
a small convolutional neural network
(CNN). This project is using the HiFi-NN
firmware.

Requires FreeRTOS on Cortex-M33.

For details on how to build and run the example applications with supported toolchains, see the Getting Started with MCUXpresso
SDK document. When using MCUXpresso IDE, the example applications can be imported through the SDK Import Wizard as
shown in Figure 10.

NXP Semiconductors
Example applications

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 5 / 28

https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-for-glow-neural-network-compiler:eIQ-Glow?tab=Design_Tools_Tab

Figure 10. MCUXpresso IDE Import project wizard for RT1050/RT1060/RT1064/RT1160/RT1170

NXP Semiconductors
Example applications

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 6 / 28

Figure 11. MCUXpresso IDE Import project wizard for RT600

Each example application contains a readme.txt file in the path <project_folder>\doc which describes the required hardware
and the steps required to build and run the application. After building the example application and downloading it to the target, the
execution stops in the main function. When the execution is resumed, an output message should be displayed on the connected
terminal. For example, Figure 12 shows the output of the glow_lenet_mnist example application for RT1050 printed to the serial
client window when UART is selected in the SDK Import Wizard.

NXP Semiconductors
Example applications

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 7 / 28

Figure 12. Serial connection window

4 Model compilation
• Bundle generation

• Model profiling

• Model tuning

4.1 Bundle generation
Bundle generation represents the model compilation to a binary object file (bundle). Bundle generation is performed using the
model-compiler tool as shown in Figure 13.

Figure 13. Generating a bundle with the model-compiler tool

It is possible to generate both floating point and quantized bundles using the model-compiler tool. Generating quantized bundles
is recommended as it can significantly reduce both the inference time and the memory footprint of the application.

The Glow compiler has an LLVM backend and is capable to cross-compile bundles for different target architectures. The following
compile options apply when targeting some of the basic architectures of interest. Later this document explains how to significantly
increase the performance by utilizing Arm CMSIS-NN and Cadence NN Library.

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 8 / 28

• For cross-compiling a bundle for the Arm Cortex M7 core from the i.MX RT1050/RT1060/RT1064/RT1160/RT1170 board:
-target=arm -mcpu=cortex-m7 -float-abi=hard

• For cross-compiling a bundle for the Arm Cortex M33 core from the i.MX RT 685 board: -target=arm -mcpu=cortex-m33 -
float-abi=hard

The model-compiler tool can be used to:

• Compile a float32 model to a float32 bundle.

• Compile a pre-quantized int8 model to an int8 bundle, using for example TensorFlowLite models quantized during training
with quantization aware training (QAT).

• Quantize and compile a float32 model to an int8 bundle using post-training quantization through profiling.

4.1.1 Compile a float32 model to a float32 bundle
In Example: Compile a float32 model to a float32 bundle there is a sample command line that generates a floating-point bundle
for the LeNet Caffe2 model. The model (files init_net.pb and predict_net.pb) is stored in the folder models\lenet_mnist and the
bundle is saved in the folder bundle specified with the emit-bundle option. You can download the model files for LeNet from the
following links:

• http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/predict_net.pb

• http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/init_net.pb

Parameter -model-input is used to specify the name of the input tensor (data), the type (float) and the shape ([1,1,28,28]).
Example: Compile a float32 model to a float32 bundle assumes that the target architecture is the Arm Cortex M7 core.

The parameter -model-input is only required for Caffe2 models which do not incorporate information about the inputs of the model.
For ONNX and TensorFlowLite models the parameter is not required.

Example: Compile a float32 model to a float32 bundle

model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard

4.1.2 Compile an int8 model to an int8 bundle
You can use the tool model-compiler to compile pre-quantized int8 or uint8 TensorFlowLite models with either:

• Asymmetric quantization for activations, asymmetric per-tensor quantization for weights

• Asymmetric quantization for activations, symmetric per-channel quantization for weights

Models with uint8 precision will be converted internally by Glow to int8. Therefore the bundle generated for uint8 will
be always int8 so you should be careful how to provide the input data to the bundle or how to consume the output
data from the bundle.

 NOTE

For example you can download a MobileNet v1 model in TensorFlowLite format from here and compile it using the
following command:

Example: Compile an int8 model to an int8 bundle

model-compiler.exe ^
 -model=mobilenet_v2_1.0_224_quant.tflite -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 9 / 28

http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/predict_net.pb
http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/init_net.pb
https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

When compiling a pre-quantized int8 model, the model-compiler tool should not be provided with any quantization
parameters (quantization-schema, quantization-precision, quantization-precision-bias or enable-channelwise)
because these parameters are determined by the model and cannot be modified. This is because re-quantization
of a model with other quantization parameters is a process which looses significant model accuracy.

 NOTE

4.1.3 Compile a float32 model to an int8 bundle
To generate a quantized bundle, the profiling information is required for the model. To generate the model profile (profile.yml) see
the instructions in Model Profiling.

Example: Compile a float32 model to an int8 bundle shows an example of generating a quantized bundle by loading the profile
profile.yml assumed available in the current directory (note the use of –load-profile=profile.yml). By default, quantization is
performed according to an asymmetric 8-bit schema.

Example: Compile a float32 model to an int8 bundle

model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^
 -load-profile=profile.yml

When generating a quantized bundle, you can choose from the following options.

• quantization-schema: specifies the quantization schema:

— asymmetric (Default)

— symmetric

— symmetric_with_uint8

— symmetric_with_power2_scale

• quantization-precision: specifies the precision used for quantized the nodes:

— Int8 (Default)

— Int16

• quantization-precision-bias: specifies the precision used to quantize the bias operand of some of the nodes (Convolution,
Fully Connected):

— Int32(Default)

— Int8

• enable-channelwise: specifies whether the quantization is done using per-channel quantization (by default is per-tensor
quantization when this option is not used)

4.1.4 Compile with CMSIS-NN and HiFi-NN optimizations
Parameter -use-cmsis instructs the compiler to generate a bundle that uses the kernel implementations from the CMSIS
NN library.

Example: Generating quantized bundle with CMSIS-NN

model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^
 -load-profile=profile.yml ^
 -use-cmsis

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 10 / 28

CMSIS-NN is a library developed for Arm Cortex M4, M7 and M33 series implementing the following NN operations:
Convolution, Fully Connected, Pooling and Activation layers. The library implementations are available for both
float32 and int8 quantized models with asymmetric schema with both per-tensor or per-channel quantization.

 NOTE

For the i.MX RT 685 board which has an additional HiFi DSP core, we can instruct the compiler to use the HiFi-NN firmware for
DSP acceleration with the flag -use-hifi. The generated bundle will run natively on the Arm Cortex M33 core but will dispatch NN
operations to the HiFi DSP. In Example: Generating floating-point bundle with HiFi-NN we have the command for building the
floating-point bundle from Example 1 but using the HiFi-NN firmware support for acceleration.

Example: Generating floating-point bundle with HiFi-NN

model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
 -use-hifi

In Example: Generating quantized bundle with HiFi-NN we have the command for building the quantized bundle from Example:
Generating quantized bundle with HiFi-NN and CMSIS-NN but using the HiFi-NN firmware support for acceleration.

Example: Generating quantized bundle with HiFi-NN

 model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
 -load-profile=profile.yml ^
 -quantization-schema=symmetric_with_power2_scale ^
 -quantization-precision-bias=Int8 -use-hifi

The HiFi-NN firmware is a software interface used by the Arm core to dispatch NN operations to the HiFi4 DSP.
The DSP has a library with kernel implementations for NN operations. The library features both floating-point
and quantized implementations using the symmetric_with_power2_scale quantization schema and int8 precision
for the bias or asymmetric quantization schema with -enable-channelwise flag and int32 precision for the bias
of Convolution and Fully Connected operators. Therefore, use the compilation flag -use-hifi only when building
floating-point bundles or quantized bundles with the mentioned schema for the i.MX RT 685.

 NOTE

To run inference on DSP standalone (with HIFI-NN optimizations), generate a Glow bundle using xt-clang compiler version with
-use-hifi flag and insert the .o and .h files in your DSP project in "glow_bundle" folder.

For specifying the xt-clang as external compiler, use these flags for model-compiler:

-llvm-compiler=<path_to_xtensa>\XtDevTools\install\tools\RI-2020.5-win32\XtensaTools\bin\xt-clang.exe
-llvm-compiler-opt="-mlsp=<path_to_RT600_SDK>\devices\MIMXRT685S\xtensa\sim -c --xtensa-
core=nxp_rt600_RI2020_5_newlib"

In Example: Generating quantized bundle with HiFi-NN and CMSIS-NN we have the command for building the quantized bundle
using both the HiFi-NN firmware and the CMSIS-NN support for acceleration.

Example: Generating quantized bundle with HiFi-NN and CMSIS-NN

 model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
 -load-profile=profile.yml ^

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 11 / 28

 -quantization-schema=symmetric_with_power2_scale ^
 -quantization-precision-bias=Int8 -use-hifi -use-cmsis

While generating the bundle using model-compiler you can also dump the visual representation of the graph using the option
-dump-graph-DAG=graph.dot which exports the graph representation in DOT format. You can find details about how to convert
the DOT format in other formats in section Model visualizer.

After running any of the above commands the model-compiler produces the following set of files:

• <model_name>.o – the bundle object file.

• <model_name>.h – the bundle header file (API).

• <model_name>.weights.txt – the weights of the model as C array data.

• <model_name>.weights.bin – the weights of the model stored in binary format.

The model parameters (weights) are provided in two formats:

• .txt (text format) suitable to initialize the weights statically (at compile time) in the application using the "#include"
preprocessor directive.

• .bin (binary format) suitable to initialize the weights dynamically (at runtime) by the application using standard library functions
like "fread".

4.2 Model profiling
Glow uses profile guided quantization, running inference to extract statistics regarding possible numeric values of each tensor
within the neural network. Later, during model compilation, Glow uses these statistics to quantize the model. The profiling
procedure is independent of the target architecture and therefore no architecture specifications are needed. The profiling
information required to quantize the model can be obtained using the image-classifier tool as shown in Figure 14.

Figure 14. Generating the profile with the image-classifier tool

To obtain the model profile, use the image-classifier tool as shown in Example: Profiling a model using image-classifier tool.
The profiling procedure requires a set of image examples to run the inference and derive the dynamic ranges of all the values
involved in inference computations in order to choose the optimal quantization parameters. Download the images provided in the
following link (MNIST dataset examples from the official Glow repository) into a new folder named images:

• https://github.com/pytorch/glow/tree/master/tests/images/mnist

The following command performs profiling for the LeNet model stored in folder models\lenet_mnist (files init_net.pb and
predict_net.pb) and stores the profile in file profile.yml. Parameter -model-input-name is used to specify the name of the input
layer name (data).

Example: Profiling a model using image-classifier tool

image-classifier.exe ^
 -input-image-dir=images ^

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 12 / 28

https://github.com/pytorch/glow/tree/master/tests/images/mnist
http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/init_net.pb
http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/predict_net.pb

 -image-mode=0to1 ^
 -image-layout=NCHW ^
 -image-channel-order=BGR ^
 -model=models\lenet_mnist ^
 -model-input-name=data ^
 -dump-profile=profile.yml

When generating the model profile, it is important to preprocess the input images the same way they were processed when training
the model. See below some parameters of the image-classifier tool that control the image preprocessing:

• -image-mode: specifies the values range for the input tensor:

— neg1to1 for values in [-1, 1]

— 0to1 for values in [0, 1]

— neg128to127 for values in [-128, 127]

— 0to255 for values in [0, 255]

• -image-layout: specifies the layout to use:

— NHWC (channel is inner-most dimension, channels are stored in memory with stride 1)

— NCHW (width is inner-most dimension, widths are stored in memory with stride 1)

• -image-channel-order: specifies the order of the channels:

— RGB

— BGR

The profiling dataset should be chosen carefully based on the following considerations:

• The dataset should contain at least one image from each class. Rule of thumb would be to use in the order of 10's of images
from each class.

• Better still the dataset should contain at least one representative image from each class, that is one image which yields a high
confidence for that class.

It is important to note that the profiling phase is independent on the target or the quantization parameters so there
is no need to specify the quantization schema, precision or other parameters during this phase. The profiling file
profile.yml is obtained in the same way regardless of the target or the quantization parameters used during model
compilation and can be reused for all quantization methods. Also note that the profiling phase is mandatory when
quantizing models.

 NOTE

4.3 Model tuning
When generating the quantization profile for the first time using the image-classifier tool, the quantization parameters might
not be the optimal ones in terms of model accuracy. When computing the quantization parameters, the image-classifier tool
chooses the maximum dynamic ranges for the quantized tensors such that no saturation occurs. This means that the quantization
step is the largest possible. The reality is that there are tensors for which most of the values are concentrated within a narrow range
while also having a couple of outlier values. For these kinds of tensors, it would be better to narrow down the dynamic range to
have a finer representation (with smaller quantization step) for most values while saturating the outlier values.

For this purpose, we have the model-tuner tool which takes a model, an input quantization profile (obtained initially with the
image-classifier tool), and a labeled data set (a set of pairs of images and classification labels) and optimizes (tunes) the
quantization profile for maximum accuracy. The optimized quantization profile (named profile_tuned.yml) can be further used
by the model-compiler tool to compile the model according to the best quantization strategy. The model-tuner flow is shown in
Figure 15.

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 13 / 28

Figure 15. Optimizing the profile with the model-tuner tool

For example, in order to optimize the quantization for the model used in previous sections, we can use the following command:

Tuning the quantization of a model without CMSIS-NN or HIFI-NN

model-tuner.exe ^
 -dataset-file=dataset.csv ^
 -dataset-path=<path> ^
 -image-mode=0to1 ^
 -image-layout=NCHW ^
 -image-channel-order=BGR ^
 -model=models\lenet_mnist ^
 -model-input=data,float,[1,1,28,28] ^
 -load-profile=profile.yml ^
 -dump-tuned-profile=profile_tuned.yml ^
 -backend=CPU

Example: Tuning the quantization of a model for CMSIS-NN or HiFi-NN

model-tuner.exe ^
 -dataset-file=dataset.csv ^
 -dataset-path=<path> ^
 -image-mode=0to1 ^
 -image-layout=NCHW ^
 -image-channel-order=BGR ^
 -model=models\lenet_mnist ^
 -model-input=data,float,[1,1,28,28] ^
 -load-profile=profile.yml ^
 -dump-tuned-profile=profile_tuned.yml ^
 -backend=CPU ^
 -quantization-precision-bias=Int8 ^
 -quantization-schema=symmetric_with_power2_scale

The labeled dataset description file dataset.csv is a text file created by the user which has on each line an entry with an image
name and an image classification label separated by space (“ “) or comma (“,”). The classification labels are assumed to start with
0 (0, 1, …) just as the C index variables. Below we have an example of such a dataset file (the dataset.csv file in the example
above) where the fields are comma separated (CSV file).

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 14 / 28

Example: Format of the labeled dataset file

image0.png,0,
image1.png,5,
image2.png,9,
……………………………………………………………

As seen, the dataset file only contains the image names. In order for the tool to localize the images, the second parameter
dataset-path is given which is the base directory where all the images can be found.

For consistency, you can create a common folder named dataset_tuning where you can store the dataset file dataset.csv and all
the images. Thus all the tuning related files are found in the same place.

The tuning procedure takes a long time to complete. Depending on the model size (number of tensors), the
procedure might complete in hours or even days. In order to reduce the procedure time, one might choose
to stop the tuning when a given accuracy has been reached, otherwise the tuning runs until completion. For
example, you can choose to stop the tuning when the accuracy has reached the value 0.95 (95 %) by setting the
target-accuracy flag:

 NOTE

Example: Tuning the quantization of a model for CMSIS-NN or HiFi-NN

model-tuner.exe ^
 -target-accuracy=0.95 ^
 -dataset-file=dataset.csv ^
 -dataset-path=<path> ^
 -image-mode=0to1 ^
 -image-layout=NCHW ^
 -image-channel-order=BGR ^
 -model=models\lenet_mnist ^
 -model-input=data,float,[1,1,28,28] ^
 -load-profile=profile.yml ^
 -dump-tuned-profile=profile_tuned.yml ^
 -backend=CPU ^
 -quantization-precision-bias=Int8 ^
 -quantization-schema=symmetric_with_power2_scale

When running the above command the console output might look like this:

Example: Command line output for tuning

Computing initial accuracy ...
Initial accuracy: 100.0000 % (FLOAT)
Initial accuracy: 100.0000 % (QUANTIZED)
Target accuracy: 95.0000 % (QUANTIZED)
Number of tensors: 25

Target accuracy achieved! Tuning is stopped ...

Final accuracy: 100.0000 % (QUANTIZED)

Total time: 0 hours 0 minutes

NXP Semiconductors
Model compilation

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 15 / 28

It is important to note that during the tuning procedure you must provide the same quantization parameters as the
ones which will be later used during the compilation phase when using the model-compiler. This is because the
tuning procedure optimizes the profiling information according to the specified quantization parameters. Also note
that the tuning phase is optional when quantizing models.

 NOTE

5 Creating the application project
The easiest way to create an application with the proper configuration is to copy and modify an existing example application. For
details on where to find the example applications and how to build them, see Example applications.

5.1 Bundle API
The Bundle API defines the interface between the user application and the model compiled with Glow AOT. Each bundle has its
own API which is generated when the model is compiled.

The most important component of the API is the entry point, the function that performs the model inference. The entry point
has the same name as the model. The user may override the model name using the -network-name parameter of the
model-compiler tool.

Besides the entry-point, the bundle API contains a series of macros that help in allocating and preparing the memory buffers for
inference. In Example: Bundle API example you can see the actual bundle API header generated for the LeNet model compiled
in the previous steps.

• <MODEL_NAME>_CONSTANT_MEM_SIZE – defines the size of the constant memory (contains the weights of the model)

• <MODEL_NAME>_MUTABLE_MEM_SIZE – defines the size of the mutable memory (contains the inputs and outputs of
the model)

• <MODEL_NAME>_ACTIVATIONS_MEM_SIZE – defines the size of the memory buffers that is internally used for storing
intermediate values (activations) during inference; buffer is used as a scratch buffer and hence can be reutilized by the
user code

• <MODEL_NAME>_MEM_ALIGN – defines the memory alignment requirement for all the allocated buffers

• <MODEL_NAME>_<placeholder_name> – defines the offset of the model placeholder <placeholder_name> within the
mutable memory area. In simple terms the placeholders of a graph/model are the overall inputs and outputs.

Example: Bundle API example

// Bundle API auto-generated header file. Do not edit!
// Glow Tools version: 2020-09-28

#ifndef _GLOW_BUNDLE_LENET_MNIST_H
#define _GLOW_BUNDLE_LENET_MNIST_H

#include <stdint.h>

// ---
// Common definitions
// ---
#ifndef _GLOW_BUNDLE_COMMON_DEFS
#define _GLOW_BUNDLE_COMMON_DEFS

// Glow bundle error code for correct execution.
#define GLOW_SUCCESS 0

// Memory alignment definition with given alignment size
// for static allocation of memory.
#define GLOW_MEM_ALIGN(size) __attribute__((aligned(size)))

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 16 / 28

// Macro function to get the absolute address of a
// placeholder using the base address of the mutable
// weight buffer and placeholder offset definition.
#define GLOW_GET_ADDR(mutableBaseAddr, placeholderOff) \
 (((uint8_t*)(mutableBaseAddr)) + placeholderOff)

#endif

// ---
// Bundle API
// ---
// Model name: "lenet_mnist"
// Total data size: 1785408 (bytes)
// Placeholders:
//
// Name: "softmax"
// Type: float<1 x 10>
// Size: 10 (elements)
// Size: 40 (bytes)
// Offset: 3136 (bytes)
//
// Name: "data"
// Type: float<1 x 1 x 28 x 28>
// Size: 784 (elements)
// Size: 3136 (bytes)
// Offset: 0 (bytes)
//
// NOTE: Placeholders are allocated within the "mutableWeight"
// buffer and are identified using an offset relative to base.
// ---
#ifdef __cplusplus
extern "C" {
#endif

// Placeholder address offsets within mutable buffer (bytes).
#define LENET_MNIST_softmax 3136
#define LENET_MNIST_data 0

// Memory sizes (bytes).
#define LENET_MNIST_CONSTANT_MEM_SIZE 1724608
#define LENET_MNIST_MUTABLE_MEM_SIZE 3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE 57600

// Memory alignment (bytes).
#define LENET_MNIST_MEM_ALIGN 64

// Bundle entry point (inference function). Returns 0
// for correct execution or some error code otherwise.
int lenet_mnist(uint8_t *constantWeight, uint8_t *mutableWeight, uint8_t *activations);

#ifdef __cplusplus
}
#endif
#endif

5.2 Integrating the bundle
The bundle consists in the following set of files:

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 17 / 28

• <model_name>.o – the bundle object file

• <model_name>.h – the bundle header file (API)

• <model_name>.weights.txt – the weights of the model as C array data

• <model_name>.weights.bin – the weights of the model stored in binary format

To integrate the bundle, include the first three generated files in the project. After copying these files in the source folder of the
project, perform the following steps.

1. Change the project properties and modify the linker options such that it includes the bundle object file when linking the
application. To modify the linker options:

• For MCUXpresso IDE

a. Right-click the project and select "Properties".

b. Select "C/C++ Build" > "Settings".

c. In the "Tool Setting" tab, select "MCU C++ Linker" > "Miscellaneous".

d. Add the bundle to "Other objects".

e. Click "Add..." and specify the relative path to the bundle in the project. That is, “../source/<model_name>.o”.

• For IAR Embedded Workbench

a. Right-click the project and select “Add” > “Add Files …”.

b. Choose the file category “Library/Object Files (*.r;*.a;*.lib;*.o)".

c. Select the bundle <model_name>.o.

d. Click “Open”.

• For Keil uVision MDK

a. Right-click the target and select “Options for Target …".

b. Select the “Linker” tab.

c. In the “Misc controls” section, add to the existing string with a separating space character the relative path to
the bundle (that is, “../source/<model_name>.o”).

2. Include the glow_bundle_utils.h header file and the bundle API header file in the application main source file. For
example, main.cpp. Assuming that the model is compiled as in Example: Including bundle, the header file is named
lenet_mnist.h.

Example: Including bundle API

#include "lenet_mnist.h"
#include "glow_bundle_utils.h"

3. Declare the buffers for constant weights, mutable weights, and activations in the application main source file. For
example, main.cpp. Initialize the constant weights with values included from the .txt file.

Example: Declaring and initializing the memory buffers file

// Statically allocate memory for constant weights (model weights) and initialize.
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t constantWeight[LENET_MNIST_CONSTANT_MEM_SIZE] = {
#include "lenet_mnist.weights.txt"
};

// Statically allocate memory for mutable weights (model input/output data).
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t mutableWeight[LENET_MNIST_MUTABLE_MEM_SIZE];

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 18 / 28

// Statically allocate memory for activations (model intermediate results).
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t activations[LENET_MNIST_ACTIVATIONS_MEM_SIZE];

In this sample, we have opted for static allocation of the buffers. If dynamic allocation is necessary, you must
pay attention to memory alignment. For this purpose, we provide the alignedAlloc function declared in header
glow_bundle_utils.h. The function takes as parameters the required alignment (in bytes) and the requested
allocation size. The function returns a pointer to the allocated memory buffer on success and NULL on error. Use
function alignedFree to deallocate memory previously allocated with alignedAlloc.

 NOTE

When initializing the constant weights buffer using the *.weights.txt file with the #include pre-processor directive, the
compilation of the project might fail for large models. This occurs when the file *.weights.txt has a large size (hundreds
of megabytes) resulting in the compiler remaining out of host memory and crashing while preprocessing the large text
file. For example, in MCUXpresso IDE, such a compile-time error might look like this:

cc1.exe: out of memory allocating 268439551 bytes
make: *** [source/subdir.mk:43: source/main_v1.o] Error 1
"make -r -j8 all" terminated with exit code 2. Build might be incomplete.

One way to solve this error is to use the binary weights file *.weights.bin instead of the text file by encapsulating it
in an assembly source file (named for example include_weights.s) and adding the file to the project source code. The
assembly file might look like this:

#if defined(__GNUC__)
 .section .weights , "ax" @progbits @preinit_array
 .global constantWeight
 .type constantWeight, %object
 .align 6
 constantWeight:
 .incbin "lenet_mnist.weights.bin"
 .end
 #endif

The above assembly source code defines a memory section named .weights in which a global variable named
constantWeight (same as before) is allocated with an alignment of 64 bytes (2 to the power of 6) and is initialized
with the content of the binary file lenet_mnist.weights.bin using the .incbin assembly directive. After this source code is
added to project, the global variable can be referenced from a C source file by adding the following declaration:

extern uint8_t constantWeight[];

4. Use GLOW_GET_ADDR macro to obtain the absolute address for each of the mutable weights of the model (model
inputs & outputs).

Example: Obtaining the addresses for the model input and output

// Bundle input data absolute address.
uint8_t *inputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_data);

// Bundle output data absolute address.
uint8_t *outputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_softmax);

5. Initialize the model input. In a real scenario, the user code obtains the input data for the inference through an
acquisition procedure from sensors. For example, cameras or transmitted from other devices through wired or wireless
communication. For simplicity, in this example we provide a buffer imageData which is statically initialized with a
sample image. The buffer is initialized using the text file input_image.inc produced by a Python script by reading,
preprocessing, and serializing a sample png image. In this example, copy the data from the initialized buffer imageData

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 19 / 28

to the inputAddr buffer where the inference function expects to find the input. In a real application, the user can avoid
this copy by filling directly the buffer pointed to by inputAddr.

Example: Application buffer with static allocation and initialization with serialized data

uint8_t imageData[] = {
#include "input_image.inc"
};

Example: Serializing an image as text file using Python script

python scripts\glow_process_image.py ^
 -image-path=model\dataset\9_1088.png ^
 -output-path=source\input_image.inc ^
 -image-mode=0to1 -image-layout=NCHW -image-channel-order=RGB

Example: Initializing the model input

memcpy(inputAddr, imageData, sizeof(imageData));

When generating the input data, it is important to preprocess it before running inference. In the sample application
projects delivered with the MCUXpresso SDK. There is a Python script (glow_process_image.py) in the project
scripts subfolder that generates the C array representation of the preprocessed input image.

 NOTE

6. Now everything is prepared to run inference by passing the three memory buffers initialized above to the bundle
entry-point function.

Example: Calling the inference function

lenet_mnist(constantWeight, mutableWeight, activations);

7. After running the inference, the results are available in the outputAddr buffer. Since LeNet is a hand-written digit
classification model, the result is an array of 10 floating-point numbers. Each number representing the confidence score
for each of the 10 digits (0 to 9). For convenience, provide the code which prints the class and the confidence score for
the most certain class (with maximum confidence, also known as top1).

Example: Processing the inference result

// Get classification top1 result and confidence
float *out_data = (float*)(outputAddr);
float max_val = 0.0;
uint32_t max_idx = 0;
for(int i = 0; i < LENET_MNIST_OUTPUT_CLASS; i++) {
if (out_data[i] > max_val) {
max_val = out_data[i];
max_idx = i;
}
}
// Print classification results
PRINTF("Top1 class = %lu\r\n", max_idx);
PRINTF("Confidence = 0.%03u\r\n",(int)(max_val*1000));

The instructions described above apply for integrating the bundle generated for the LeNet model for RT1050/
RT1060/RT1064/RT1160/RT1170 boards. For instructions related to the RT600 board where some minor
differences apply you can access the RT685 Lab guide available here. Also you can find additional information
about the memory usage for Glow applications here.

 NOTE

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 20 / 28

https://community.nxp.com/t5/eIQ-Machine-Learning-Software/eIQ-Glow-Lab-for-i-MX-RT/ta-p/1123119
https://www.nxp.com/docs/en/application-note/AN13001.pdf

5.3 Other optimizations
Since the i.MX RT devices also have available small but fast memory units called TCM (Tightly Coupled Memory), Glow has
the capability to use such fast memories to optimize the performance. For example, the i.MX RT 1052 has the following TCM
units: DTC (128 kB), ITC (128 kB), and OCRAM (256 kB). To be noted that the smaller memories are commonly faster that the
bigger ones.

In order to use TCM, when compiling the bundle using the model-compiler tool, the user must provide the information about the
number and the size of all the available TCM memories in the decreasing order of their priority (a memory which is listed first is
used before the other if the size allows it). This means that the memories should be listed in the decreasing order of their speed
for best performance. For example, for the i.MX RT 1052, the model-compiler tool is provided with the -tcm-size option which
specifies the TCM sizes as a comma-separated list of integer values (the sizes are expressed in bytes):

-tcm-size=131072,126976,262144

To be noted that the above sizes correspond (in order) to the DTC size (128 kB), the ITC size minus the stack size (128 kB minus
4 kB) and the OCRAM size (256 kB). We do not provide the entire ITC memory to Glow because part of it (4 kB) we use for stack
which is recommended in most cases. Glow tries to use DTC first, ITC second, and OCRAM last (depending on whether a given
memory can accommodate a given computation).

The generated bundle contains the following extra content in the auto-generated header file <model_name>.h:

extern uint8_t *glow_tcm_addr[];

What this means is that the Glow bundle now expects some information from the user application about the locations (base
addresses) for each of the TCM memories through a symbol glow_tcm_addr which is an array of raw pointers. In order to
provide the base addresses of the TCM memories, the user must perform the following steps (this example is provided only for
MCUXpresso IDE although for other IDEs the steps should be similar):

1. Define a section for each TCM memory. In the picture below we can see that we define the sections .tcm_dtc, .tcm_itc,
and .tcm_oc for DTC, ITC and OCRAM. We also see that the stack is allocated in ITC (recommended).

2. Allocate one buffer in each section:

__attribute__((section(".tcm_dtc")))
uint8_t dtc_memory[128 * 1024];

NXP Semiconductors
Creating the application project

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 21 / 28

__attribute__((section(".tcm_itc")))
uint8_t itc_memory[128 * 1024 – 4 * 1024];

__attribute__((section(".tcm_oc")))
uint8_t oc_memory[256 * 1024];

3. Provide to the bundle the base address of each TCM memory by defining the glow_tcm_addr array of pointers.

uint8_t *glow_tcm_addr[] = {dtc_memory, itc_memory, oc_memory};

The TCM usage configuration presented above is an example of how to use the maximum amount of TCM available and
also how to place the stack on the ITC for the i.MX RT 1050 board. For practical reasons, we do not need to use all the
TCM to have best performance and also not always placing the stack on the ITC provides best results. Table 2 provides
the recommended usage configuration for each board.

Table 2. Recommended usage configuration

Boards Available TCM Recommended TCM usage Stack in ITC

i.MX RT 1050 128 kB (DTC) 128 kB (ITC)
256 kB (OCRAM)

128 kB (DTC) Yes

i.MX RT 1060 128 kB (DTC) 128 kB (ITC)
768 kB (OCRAM)

128 kB (DTC) No

i.MX RT 1064 128 kB (DTC) 128 kB (ITC)
768 kB (OCRAM)

128 kB (DTC) No

i.MX RT 1160 256 kB (DTC) 256 kB (ITC) 64
kB (OCRAM1)

256 kB (DTC) No

i.MX RT 1170 256 kB (DTC) 256 kB (ITC)
512 kB (OCRAM1)

256 kB (DTC) No

The TCM optimizations are currently available only for those layers mapped to the CMSIS-NN optimized
implementations when using the -use-cmsis option. Therefore, use the option -tcm-size only when using the
option -use-cmsis.

 NOTE

6 Utilities
This section describes utilities which can be used to convert, visualize and debug models.

6.1 Model conversion
The Glow compiler currently has support only for Caffe2, ONNX, and TensorFlowLite model formats. Since a lot of well-known
models are available in other formats, for example TensorFlow, it might be of interest to have some tools to convert models
between different formats. The most used tools for format conversion are MMDNN and tf2onnx:

• MMDNN: https://github.com/Microsoft/MMdnn

• tf2onnx: https://github.com/onnx/tensorflow-onnx

We will exemplify how to convert a TensorFlow model to ONNX using the MMDNN tool. We will convert a MobileNet V1 image
classification model which operates on 128 x 128 RGB images and 1001 classes. Download the MobileNet V1 model archive
from here:

• http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128.tgz

After you install MMDNN run the following command to convert the TensorFlow frozen file mobilenet_v1_0.25_128_frozen.pb to
the ONNX model file mobilenet_v1_0.25_128_frozen_2018.onnx.

NXP Semiconductors
Utilities

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 22 / 28

https://github.com/Microsoft/MMdnn
https://github.com/onnx/tensorflow-onnx
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128.tgz

Example: Convert model from TensorFlow format to ONNX using MMDNN

mmconvert ^
 -sf tensorflow ^
 -iw mobilenet_v1_0.25_128_frozen.pb ^
 --inNodeName input ^
 --inputShape 128,128,3 ^
 --dstNodeName MobilenetV1/Predictions/Softmax ^
 -df onnx ^
 -om mobilenet_v1_0.25_128_frozen_2018.onnx

You can find additional models in the links below, either directly in ONNX format or other formats which can be converted to ONNX
using the conversion tools previously mentioned.

ONNX Model Zoo: https://github.com/onnx/models

MobileNetV1: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

MobileNetV2: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

6.2 Model visualizer
A very popular tool for visualizing the original model before compiling with Glow is Netron which has an online browser version
here: https://lutzroeder.github.io/netron/. In order to use Netron drag and drop the model file into the browser window.

The Glow compiler integrates the graphviz utility for exporting the graph visual representation of the compiled model in dot
format. The graph will depict all the optimizations and conversions performed on the original model by Glow including the node
specializations when using CMSIS-NN or HIFI-NN. Note that the compile command from Example: Compile a float32 model to a
float32 bundle but with the addition of the -dump-graph-DAG=graph.dot option which exports the graph visual representation in
the file graph.dot as presented below.

Example: Dump model graph visual representation to DOT file

model-compiler.exe ^
 -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
 -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^
 -dump-graph-DAG=graph.dot

The DOT format is a text description file which can be used to generate visual representations of the graph. We can use the
“dot.exe” utility (which is installed together with the Glow tools for Windows) to convert the DOT file to PDF or PNG file formats
as depicted below.

Example: Convert graph DOT format to PDF/PNG format

dot -Tpdf graph.dot -o graph.pdf -Nfontname="Times New Roman,"
dot -Tpng graph.dot -o graph.png -Nfontname="Times New Roman,"

The model graph representation for LeNet generated as PDF file might be as shown in Figure 16.

NXP Semiconductors
Utilities

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 23 / 28

https://github.com/onnx/models
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://lutzroeder.github.io/netron/

Figure 16. Model graph visualization

7 Note about the source code in the document
Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2019 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

NXP Semiconductors
Note about the source code in the document

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 24 / 28

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8 Revision history
Table 3 summarizes the changes done to the document since the initial release.

Table 3. Revision history

Revision number Date Substantive changes

0 01 September 2019 Initial release with CMSIS-NN support

1 15 April 2020 Updated for HiFi-NN support

2 01 October 2020 Updated for i.MX RT1170 support

3 25 November 2021 Updated for MCUXSDK 2.9.0

4 10 July 2021 Updated for MCUXSDK 2.10.0

5 19 December 2021 Updated for MCUXSDK 2.11.0

6 01 June 2022 Updated for MCUXSDK 2.12.0

NXP Semiconductors
Revision history

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 25 / 28

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

NXP Semiconductors
Legal information

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 26 / 28

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

eIQ Glow Ahead of Time User Guide, Rev. 6, 01 June 2022
User Guide 27 / 28

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2019-2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 June 2022
Document identifier: EIQGLOWAOTUG

	Contents
	1 Overview
	2 Deployment
	3 Example applications
	4 Model compilation
	4.1 Bundle generation
	4.1.1 Compile a float32 model to a float32 bundle
	4.1.2 Compile an int8 model to an int8 bundle
	4.1.3 Compile a float32 model to an int8 bundle
	4.1.4 Compile with CMSIS-NN and HiFi-NN optimizations

	4.2 Model profiling
	4.3 Model tuning

	5 Creating the application project
	5.1 Bundle API
	5.2 Integrating the bundle
	5.3 Other optimizations

	6 Utilities
	6.1 Model conversion
	6.2 Model visualizer

	7 Note about the source code in the document
	8 Revision history
	Legal information

