
1 Overview
Glow is a machine learning compiler for neural network graphs. It is designed 
to optimize the neural network graphs and generate code for various hardware 
devices available at https://github.com/pytorch/glow. Glow comes in two 
flavors: Just in Time (JIT) and Ahead of Time (AOT) compilations. JIT 
compilation is performed at runtime just before the model is executed. AOT 
compilation is performed offline and generates an object file (bundle) which is 
later linked with the application code.

MCUXpresso Software Development Kit (MCUXpresso SDK) provides a set of 
helper functions that allows integration of Glow AOT bundles.

Ensure to see the official Glow documentation for building AOT applications 
located at: https://github.com/pytorch/glow/blob/master/docs/AOT.md before 
proceeding. However, the eIQ Glow Ahead of Time User Guide provides extra 
information regarding the NXP deliverable of the Glow compiler which includes 
some extra features and optimizations.

This document describes steps to download, start using Glow AOT, and create 
an application that integrates bundles generated using the Glow AOT compiler.

To run the Glow AOT project examples, the following packages must be installed on your system.

• MCUXpresso IDE

• MCUXpresso SDK loaded into MCUXpresso IDE

• A serial connection client like PuTTY or Tera Term

• Python 3.6 with pip package installer

• The Glow AOT compiler which is available for Windows here.

After installing the Glow AOT compiler, you must add the location of the Glow binary tools to the PATH system 
environment variable.

2 Deployment
The eIQ Glow AOT is part of the eIQ machine learning software package, which is an optional middleware component 
of MCUXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on 
mcuxpresso.nxp.com. To include eIQ machine learning into an MCUXpresso SDK package, the eIQ middleware component has 
to be selected in the software component selector on the SDK Builder when building a new package. For details, see Figure 1.
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Figure 1. MCUXpresso SDK Builder software component selector for RT1050/RT1060/RT1064/RT1160/RT1170

Figure 2. MCUXpresso SDK Builder software component selector for RT600

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or imported into the MCUXpresso 
IDE. To get familiar with the MCUXpresso SDK folder structure, see the Getting Started with MCUXpresso SDK document.

The package directory structure might look like Figure 3. The eIQ Glow library directories are highlighted in red.
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Figure 3. MCUXpresso EVKB-IMRT1050 SDK structure

The package directory structure might look like Figure 4. The eIQ Glow library directories are highlighted in red.

Figure 4. MCUXpresso EVKB-IMRT1060 SDK structure

The package directory structure might look like Figure 5. The eIQ Glow library directories are highlighted in red.

Figure 5. MCUXpresso EVKB-IMRT1170 SDK structure
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The package directory structure might look like Figure 6. The eIQ Glow library directories are highlighted in red.

Figure 6. MCUXpresso MIMXRT1060-EVKB SDK structure

The package directory structure might look like Figure 7. The eIQ Glow library directories are highlighted in red.

Figure 7. MCUXpresso MIMXRT1160-EVK SDK structure

The package directory structure might look like Figure 8. The eIQ Glow library directories are highlighted in red.

Figure 8. MCUXpresso EVK-MIMXRT1064 SDK structure

The package directory structure might look like Figure 9. The eIQ Glow library directories are highlighted in red.
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Figure 9. MCUXpresso EVKB-MIMXRT685 SDK structure

.

The boards directory contains example application projects for supported toolchains (for the list of supported toolchains, see the 
MCUXpresso SDK Release Notes document). The middleware directory contains the eIQ library source codes, pre-compiled 
library binaries and example application source codes and data.

 
Installing the Glow AOT tool on the target machine is out of the scope of this document. It is assumed that the tool 
is already installed on the workstation and its location is included in the system path. You can find the Glow AOT 
Windows installer here.

  NOTE  

3 Example applications
The eIQ Glow AOT is provided with a set of example applications. For details, see Table 1. The applications demonstrate the 
usage of the Glow AOT in several use cases.

Table 1. List of example applications

Name Boards Description

glow_cifar10 RT1050/RT1060/RT1064/RT1160/
RT1170

CIFAR-10 classification of 32x32 RGB 
pixel images into 10 categories 
using a small convolutional neural 
network (CNN).

glow_lenet_mnist RT1050/RT1060/RT1064/RT1160/
RT1170

Performs handwritten digit classification 
using the LeNet neural network trained 
on MNIST database.

glow_cifar10 RT600 CIFAR-10 classification of 32x32 RGB 
pixel images into 10 categories using 
a small convolutional neural network 
(CNN). This project is using the HiFi-NN 
firmware.

Requires FreeRTOS on Cortex-M33.

For details on how to build and run the example applications with supported toolchains, see the Getting Started with MCUXpresso 
SDK document. When using MCUXpresso IDE, the example applications can be imported through the SDK Import Wizard as 
shown in Figure 10.
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Figure 10. MCUXpresso IDE Import project wizard for RT1050/RT1060/RT1064/RT1160/RT1170
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Figure 11. MCUXpresso IDE Import project wizard for RT600

Each example application contains a readme.txt file in the path <project_folder>\doc which describes the required hardware 
and the steps required to build and run the application. After building the example application and downloading it to the target, the 
execution stops in the main function. When the execution is resumed, an output message should be displayed on the connected 
terminal. For example, Figure 12 shows the output of the glow_lenet_mnist example application for RT1050 printed to the serial 
client window when UART is selected in the SDK Import Wizard.
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Figure 12. Serial connection window

4 Model compilation
• Bundle generation

• Model profiling

• Model tuning

4.1 Bundle generation
Bundle generation represents the model compilation to a binary object file (bundle). Bundle generation is performed using the 
model-compiler tool as shown in Figure 13.

Figure 13. Generating a bundle with the model-compiler tool

It is possible to generate both floating point and quantized bundles using the model-compiler tool. Generating quantized bundles 
is recommended as it can significantly reduce both the inference time and the memory footprint of the application.

The Glow compiler has an LLVM backend and is capable to cross-compile bundles for different target architectures. The following 
compile options apply when targeting some of the basic architectures of interest. Later this document explains how to significantly 
increase the performance by utilizing Arm CMSIS-NN and Cadence NN Library.
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• For cross-compiling a bundle for the Arm Cortex M7 core from the i.MX RT1050/RT1060/RT1064/RT1160/RT1170 board: 
-target=arm -mcpu=cortex-m7 -float-abi=hard

• For cross-compiling a bundle for the Arm Cortex M33 core from the i.MX RT 685 board: -target=arm -mcpu=cortex-m33 -
float-abi=hard

The model-compiler tool can be used to:

• Compile a float32 model to a float32 bundle.

• Compile a pre-quantized int8 model to an int8 bundle, using for example TensorFlowLite models quantized during training 
with quantization aware training (QAT).

• Quantize and compile a float32 model to an int8 bundle using post-training quantization through profiling.

4.1.1 Compile a float32 model to a float32 bundle
In Example: Compile a float32 model to a float32 bundle there is a sample command line that generates a floating-point bundle 
for the LeNet Caffe2 model. The model (files init_net.pb and predict_net.pb) is stored in the folder models\lenet_mnist and the 
bundle is saved in the folder bundle specified with the emit-bundle option. You can download the model files for LeNet from the 
following links:

• http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/predict_net.pb

• http://fb-glow-assets.s3.amazonaws.com/models/lenet_mnist/init_net.pb

Parameter -model-input is used to specify the name of the input tensor (data), the type (float) and the shape ([1,1,28,28]). 
Example: Compile a float32 model to a float32 bundle assumes that the target architecture is the Arm Cortex M7 core.

The parameter -model-input is only required for Caffe2 models which do not incorporate information about the inputs of the model. 
For ONNX and TensorFlowLite models the parameter is not required.

Example: Compile a float32 model to a float32 bundle

model-compiler.exe ^
        -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^     
        -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard

4.1.2 Compile an int8 model to an int8 bundle
You can use the tool model-compiler to compile pre-quantized int8 or uint8 TensorFlowLite models with either:

• Asymmetric quantization for activations, asymmetric per-tensor quantization for weights

• Asymmetric quantization for activations, symmetric per-channel quantization for weights

 
Models with uint8 precision will be converted internally by Glow to int8. Therefore the bundle generated for uint8 will 
be always int8 so you should be careful how to provide the input data to the bundle or how to consume the output 
data from the bundle.

  NOTE  

For example you can download a MobileNet v1 model in TensorFlowLite format from here and compile it using the 
following command:

Example: Compile an int8 model to an int8 bundle

model-compiler.exe ^
         -model=mobilenet_v2_1.0_224_quant.tflite -emit-bundle=bundle ^
         -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard
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When compiling a pre-quantized int8 model, the model-compiler tool should not be provided with any quantization 
parameters (quantization-schema, quantization-precision, quantization-precision-bias or enable-channelwise) 
because these parameters are determined by the model and cannot be modified. This is because re-quantization 
of a model with other quantization parameters is a process which looses significant model accuracy.

  NOTE  

4.1.3 Compile a float32 model to an int8 bundle
To generate a quantized bundle, the profiling information is required for the model. To generate the model profile (profile.yml) see 
the instructions in Model Profiling.

Example: Compile a float32 model to an int8 bundle shows an example of generating a quantized bundle by loading the profile 
profile.yml assumed available in the current directory (note the use of –load-profile=profile.yml). By default, quantization is 
performed according to an asymmetric 8-bit schema.

Example: Compile a float32 model to an int8 bundle

model-compiler.exe ^
         -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^     
         -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^ 
         -load-profile=profile.yml

When generating a quantized bundle, you can choose from the following options.

• quantization-schema: specifies the quantization schema:

— asymmetric (Default)

— symmetric

— symmetric_with_uint8

— symmetric_with_power2_scale

• quantization-precision: specifies the precision used for quantized the nodes:

— Int8 (Default)

— Int16

• quantization-precision-bias: specifies the precision used to quantize the bias operand of some of the nodes (Convolution, 
Fully Connected):

— Int32(Default)

— Int8

• enable-channelwise: specifies whether the quantization is done using per-channel quantization (by default is per-tensor 
quantization when this option is not used)

4.1.4 Compile with CMSIS-NN and HiFi-NN optimizations
Parameter -use-cmsis instructs the compiler to generate a bundle that uses the kernel implementations from the CMSIS
NN library.

Example: Generating quantized bundle with CMSIS-NN

model-compiler.exe ^
     -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^     
     -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^    
     -load-profile=profile.yml ^   
     -use-cmsis
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CMSIS-NN is a library developed for Arm Cortex M4, M7 and M33 series implementing the following NN operations: 
Convolution, Fully Connected, Pooling and Activation layers. The library implementations are available for both 
float32 and int8 quantized models with asymmetric schema with both per-tensor or per-channel quantization.

  NOTE  

For the i.MX RT 685 board which has an additional HiFi DSP core, we can instruct the compiler to use the HiFi-NN firmware for 
DSP acceleration with the flag -use-hifi. The generated bundle will run natively on the Arm Cortex M33 core but will dispatch NN 
operations to the HiFi DSP. In Example: Generating floating-point bundle with HiFi-NN we have the command for building the 
floating-point bundle from Example 1 but using the HiFi-NN firmware support for acceleration.

Example: Generating floating-point bundle with HiFi-NN

model-compiler.exe ^
    -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
    -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
    -use-hifi    

In Example: Generating quantized bundle with HiFi-NN we have the command for building the quantized bundle from Example: 
Generating quantized bundle with HiFi-NN and CMSIS-NN but using the HiFi-NN firmware support for acceleration.

Example: Generating quantized bundle with HiFi-NN

 model-compiler.exe ^
        -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
        -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
        -load-profile=profile.yml ^
       -quantization-schema=symmetric_with_power2_scale ^
        -quantization-precision-bias=Int8 -use-hifi           

 
The HiFi-NN firmware is a software interface used by the Arm core to dispatch NN operations to the HiFi4 DSP. 
The DSP has a library with kernel implementations for NN operations. The library features both floating-point 
and quantized implementations using the symmetric_with_power2_scale quantization schema and int8 precision 
for the bias or asymmetric quantization schema with -enable-channelwise flag and int32 precision for the bias 
of Convolution and Fully Connected operators. Therefore, use the compilation flag -use-hifi only when building 
floating-point bundles or quantized bundles with the mentioned schema for the i.MX RT 685.

  NOTE  

To run inference on DSP standalone (with HIFI-NN optimizations), generate a Glow bundle using xt-clang compiler version with 
-use-hifi flag and insert the .o and .h files in your DSP project in "glow_bundle" folder.

For specifying the xt-clang as external compiler, use these flags for model-compiler:

-llvm-compiler=<path_to_xtensa>\XtDevTools\install\tools\RI-2020.5-win32\XtensaTools\bin\xt-clang.exe
-llvm-compiler-opt="-mlsp=<path_to_RT600_SDK>\devices\MIMXRT685S\xtensa\sim -c --xtensa-
core=nxp_rt600_RI2020_5_newlib"        

In Example: Generating quantized bundle with HiFi-NN and CMSIS-NN we have the command for building the quantized bundle 
using both the HiFi-NN firmware and the CMSIS-NN support for acceleration.

Example: Generating quantized bundle with HiFi-NN and CMSIS-NN

 model-compiler.exe ^
    -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
    -backend=CPU -target=arm -mcpu=cortex-m33 -float-abi=hard ^
    -load-profile=profile.yml ^
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     -quantization-schema=symmetric_with_power2_scale ^
    -quantization-precision-bias=Int8 -use-hifi -use-cmsis       

While generating the bundle using model-compiler you can also dump the visual representation of the graph using the option 
-dump-graph-DAG=graph.dot which exports the graph representation in DOT format. You can find details about how to convert 
the DOT format in other formats in section Model visualizer.

After running any of the above commands the model-compiler produces the following set of files:

• <model_name>.o – the bundle object file.

• <model_name>.h – the bundle header file (API).

• <model_name>.weights.txt – the weights of the model as C array data.

• <model_name>.weights.bin – the weights of the model stored in binary format.

The model parameters (weights) are provided in two formats:

• .txt (text format) suitable to initialize the weights statically (at compile time) in the application using the "#include" 
preprocessor directive.

• .bin (binary format) suitable to initialize the weights dynamically (at runtime) by the application using standard library functions 
like "fread".

4.2 Model profiling
Glow uses profile guided quantization, running inference to extract statistics regarding possible numeric values of each tensor 
within the neural network. Later, during model compilation, Glow uses these statistics to quantize the model. The profiling 
procedure is independent of the target architecture and therefore no architecture specifications are needed. The profiling 
information required to quantize the model can be obtained using the image-classifier tool as shown in Figure 14.

Figure 14. Generating the profile with the image-classifier tool

To obtain the model profile, use the image-classifier tool as shown in Example: Profiling a model using image-classifier tool. 
The profiling procedure requires a set of image examples to run the inference and derive the dynamic ranges of all the values 
involved in inference computations in order to choose the optimal quantization parameters. Download the images provided in the 
following link (MNIST dataset examples from the official Glow repository) into a new folder named images:

• https://github.com/pytorch/glow/tree/master/tests/images/mnist

The following command performs profiling for the LeNet model stored in folder models\lenet_mnist (files init_net.pb and 
predict_net.pb) and stores the profile in file profile.yml. Parameter -model-input-name is used to specify the name of the input 
layer name (data).

Example: Profiling a model using image-classifier tool

image-classifier.exe ^
        -input-image-dir=images ^
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        -image-mode=0to1 ^
        -image-layout=NCHW ^
        -image-channel-order=BGR ^
        -model=models\lenet_mnist ^
        -model-input-name=data ^
        -dump-profile=profile.yml

When generating the model profile, it is important to preprocess the input images the same way they were processed when training 
the model. See below some parameters of the image-classifier tool that control the image preprocessing:

• -image-mode: specifies the values range for the input tensor:

— neg1to1 for values in [-1, 1]

— 0to1 for values in [0, 1]

— neg128to127 for values in [-128, 127]

— 0to255 for values in [0, 255]

• -image-layout: specifies the layout to use:

— NHWC (channel is inner-most dimension, channels are stored in memory with stride 1)

— NCHW (width is inner-most dimension, widths are stored in memory with stride 1)

• -image-channel-order: specifies the order of the channels:

— RGB

— BGR

The profiling dataset should be chosen carefully based on the following considerations:

• The dataset should contain at least one image from each class. Rule of thumb would be to use in the order of 10's of images 
from each class.

• Better still the dataset should contain at least one representative image from each class, that is one image which yields a high 
confidence for that class.

 
It is important to note that the profiling phase is independent on the target or the quantization parameters so there 
is no need to specify the quantization schema, precision or other parameters during this phase. The profiling file 
profile.yml is obtained in the same way regardless of the target or the quantization parameters used during model 
compilation and can be reused for all quantization methods. Also note that the profiling phase is mandatory when 
quantizing models.

  NOTE  

4.3 Model tuning
When generating the quantization profile for the first time using the image-classifier tool, the quantization parameters might 
not be the optimal ones in terms of model accuracy. When computing the quantization parameters, the image-classifier tool 
chooses the maximum dynamic ranges for the quantized tensors such that no saturation occurs. This means that the quantization 
step is the largest possible. The reality is that there are tensors for which most of the values are concentrated within a narrow range 
while also having a couple of outlier values. For these kinds of tensors, it would be better to narrow down the dynamic range to 
have a finer representation (with smaller quantization step) for most values while saturating the outlier values.

For this purpose, we have the model-tuner tool which takes a model, an input quantization profile (obtained initially with the 
image-classifier tool), and a labeled data set (a set of pairs of images and classification labels) and optimizes (tunes) the 
quantization profile for maximum accuracy. The optimized quantization profile (named profile_tuned.yml) can be further used 
by the model-compiler tool to compile the model according to the best quantization strategy. The model-tuner flow is shown in 
Figure 15.
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Figure 15. Optimizing the profile with the model-tuner tool

For example, in order to optimize the quantization for the model used in previous sections, we can use the following command:

Tuning the quantization of a model without CMSIS-NN or HIFI-NN

model-tuner.exe ^
    -dataset-file=dataset.csv ^
    -dataset-path=<path> ^
    -image-mode=0to1 ^
    -image-layout=NCHW ^
    -image-channel-order=BGR ^
    -model=models\lenet_mnist ^
    -model-input=data,float,[1,1,28,28] ^
    -load-profile=profile.yml ^
    -dump-tuned-profile=profile_tuned.yml ^
    -backend=CPU

Example: Tuning the quantization of a model for CMSIS-NN or HiFi-NN

model-tuner.exe ^
    -dataset-file=dataset.csv ^
    -dataset-path=<path> ^
    -image-mode=0to1 ^
    -image-layout=NCHW ^
    -image-channel-order=BGR ^
    -model=models\lenet_mnist ^
    -model-input=data,float,[1,1,28,28] ^
    -load-profile=profile.yml ^
    -dump-tuned-profile=profile_tuned.yml ^
    -backend=CPU ^
    -quantization-precision-bias=Int8 ^
    -quantization-schema=symmetric_with_power2_scale        

The labeled dataset description file dataset.csv is a text file created by the user which has on each line an entry with an image 
name and an image classification label separated by space (“ “) or comma (“,”). The classification labels are assumed to start with 
0 (0, 1, …) just as the C index variables. Below we have an example of such a dataset file (the dataset.csv file in the example 
above) where the fields are comma separated (CSV file).
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Example: Format of the labeled dataset file

image0.png,0,
image1.png,5,
image2.png,9,
……………………………………………………………           

As seen, the dataset file only contains the image names. In order for the tool to localize the images, the second parameter 
dataset-path is given which is the base directory where all the images can be found.

For consistency, you can create a common folder named dataset_tuning where you can store the dataset file dataset.csv and all 
the images. Thus all the tuning related files are found in the same place.

 
The tuning procedure takes a long time to complete. Depending on the model size (number of tensors), the 
procedure might complete in hours or even days. In order to reduce the procedure time, one might choose 
to stop the tuning when a given accuracy has been reached, otherwise the tuning runs until completion. For 
example, you can choose to stop the tuning when the accuracy has reached the value 0.95 (95 %) by setting the 
target-accuracy flag:

  NOTE  

Example: Tuning the quantization of a model for CMSIS-NN or HiFi-NN

model-tuner.exe ^
     -target-accuracy=0.95 ^
     -dataset-file=dataset.csv ^
     -dataset-path=<path> ^
     -image-mode=0to1 ^
     -image-layout=NCHW ^
     -image-channel-order=BGR ^
     -model=models\lenet_mnist ^
     -model-input=data,float,[1,1,28,28] ^    
     -load-profile=profile.yml ^    
     -dump-tuned-profile=profile_tuned.yml ^ 
     -backend=CPU ^    
     -quantization-precision-bias=Int8 ^ 
     -quantization-schema=symmetric_with_power2_scale         

When running the above command the console output might look like this:

Example: Command line output for tuning

Computing initial accuracy ...
Initial accuracy: 100.0000 % (FLOAT)
Initial accuracy: 100.0000 % (QUANTIZED)
Target  accuracy: 95.0000 % (QUANTIZED)
Number of tensors: 25

Target accuracy achieved! Tuning is stopped ...

Final accuracy: 100.0000 % (QUANTIZED)

Total time: 0 hours 0 minutes
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It is important to note that during the tuning procedure you must provide the same quantization parameters as the 
ones which will be later used during the compilation phase when using the model-compiler. This is because the 
tuning procedure optimizes the profiling information according to the specified quantization parameters. Also note 
that the tuning phase is optional when quantizing models.

  NOTE  

5 Creating the application project
The easiest way to create an application with the proper configuration is to copy and modify an existing example application. For 
details on where to find the example applications and how to build them, see Example applications.

5.1 Bundle API
The Bundle API defines the interface between the user application and the model compiled with Glow AOT. Each bundle has its 
own API which is generated when the model is compiled.

The most important component of the API is the entry point, the function that performs the model inference. The entry point 
has the same name as the model. The user may override the model name using the -network-name parameter of the 
model-compiler tool.

Besides the entry-point, the bundle API contains a series of macros that help in allocating and preparing the memory buffers for 
inference. In Example: Bundle API example you can see the actual bundle API header generated for the LeNet model compiled 
in the previous steps.

• <MODEL_NAME>_CONSTANT_MEM_SIZE – defines the size of the constant memory (contains the weights of the model)

• <MODEL_NAME>_MUTABLE_MEM_SIZE – defines the size of the mutable memory (contains the inputs and outputs of 
the model)

• <MODEL_NAME>_ACTIVATIONS_MEM_SIZE – defines the size of the memory buffers that is internally used for storing 
intermediate values (activations) during inference; buffer is used as a scratch buffer and hence can be reutilized by the 
user code

• <MODEL_NAME>_MEM_ALIGN – defines the memory alignment requirement for all the allocated buffers

• <MODEL_NAME>_<placeholder_name> – defines the offset of the model placeholder <placeholder_name> within the 
mutable memory area. In simple terms the placeholders of a graph/model are the overall inputs and outputs.

Example: Bundle API example

// Bundle API auto-generated header file. Do not edit!
// Glow Tools version: 2020-09-28

#ifndef _GLOW_BUNDLE_LENET_MNIST_H
#define _GLOW_BUNDLE_LENET_MNIST_H

#include <stdint.h>

// ---------------------------------------------------------------
//                       Common definitions
// ---------------------------------------------------------------
#ifndef _GLOW_BUNDLE_COMMON_DEFS
#define _GLOW_BUNDLE_COMMON_DEFS

// Glow bundle error code for correct execution.
#define GLOW_SUCCESS 0

// Memory alignment definition with given alignment size
// for static allocation of memory.
#define GLOW_MEM_ALIGN(size)  __attribute__((aligned(size)))
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// Macro function to get the absolute address of a
// placeholder using the base address of the mutable
// weight buffer and placeholder offset definition.
#define GLOW_GET_ADDR(mutableBaseAddr, placeholderOff)  \
    (((uint8_t*)(mutableBaseAddr)) + placeholderOff)

#endif

// ---------------------------------------------------------------
//                          Bundle API
// ---------------------------------------------------------------
// Model name: "lenet_mnist"
// Total data size: 1785408 (bytes)
// Placeholders:
//
//   Name: "softmax"
//   Type: float<1 x 10>
//   Size: 10 (elements)
//   Size: 40 (bytes)
//   Offset: 3136 (bytes)
//
//   Name: "data"
//   Type: float<1 x 1 x 28 x 28>
//   Size: 784 (elements)
//   Size: 3136 (bytes)
//   Offset: 0 (bytes)
//
// NOTE: Placeholders are allocated within the "mutableWeight"
// buffer and are identified using an offset relative to base.
// ---------------------------------------------------------------
#ifdef __cplusplus
extern "C" {
#endif

// Placeholder address offsets within mutable buffer (bytes).
#define LENET_MNIST_softmax  3136
#define LENET_MNIST_data     0

// Memory sizes (bytes).
#define LENET_MNIST_CONSTANT_MEM_SIZE     1724608
#define LENET_MNIST_MUTABLE_MEM_SIZE      3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE  57600

// Memory alignment (bytes).
#define LENET_MNIST_MEM_ALIGN  64

// Bundle entry point (inference function). Returns 0
// for correct execution or some error code otherwise.
int lenet_mnist(uint8_t *constantWeight, uint8_t *mutableWeight, uint8_t *activations);

#ifdef __cplusplus
}
#endif
#endif

5.2 Integrating the bundle
The bundle consists in the following set of files:
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• <model_name>.o – the bundle object file

• <model_name>.h – the bundle header file (API)

• <model_name>.weights.txt – the weights of the model as C array data

• <model_name>.weights.bin – the weights of the model stored in binary format

To integrate the bundle, include the first three generated files in the project. After copying these files in the source folder of the 
project, perform the following steps.

1. Change the project properties and modify the linker options such that it includes the bundle object file when linking the 
application. To modify the linker options:

• For MCUXpresso IDE

a. Right-click the project and select "Properties".

b. Select "C/C++ Build" > "Settings".

c. In the "Tool Setting" tab, select "MCU C++ Linker" > "Miscellaneous".

d. Add the bundle to "Other objects".

e. Click "Add..." and specify the relative path to the bundle in the project. That is, “../source/<model_name>.o”.

• For IAR Embedded Workbench

a. Right-click the project and select “Add” > “Add Files …”.

b. Choose the file category “Library/Object Files (*.r;*.a;*.lib;*.o)".

c. Select the bundle <model_name>.o.

d. Click “Open”.

• For Keil uVision MDK

a. Right-click the target and select “Options for Target …".

b. Select the “Linker” tab.

c. In the “Misc controls” section, add to the existing string with a separating space character the relative path to 
the bundle (that is, “../source/<model_name>.o”).

2. Include the glow_bundle_utils.h header file and the bundle API header file in the application main source file. For 
example, main.cpp. Assuming that the model is compiled as in Example: Including bundle, the header file is named 
lenet_mnist.h.

Example: Including bundle API

#include "lenet_mnist.h"
#include "glow_bundle_utils.h"

3. Declare the buffers for constant weights, mutable weights, and activations in the application main source file. For 
example, main.cpp. Initialize the constant weights with values included from the .txt file.

Example: Declaring and initializing the memory buffers file

// Statically allocate memory for constant weights (model weights) and initialize.
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t constantWeight[LENET_MNIST_CONSTANT_MEM_SIZE] = {
#include "lenet_mnist.weights.txt"
};

// Statically allocate memory for mutable weights (model input/output data).
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t mutableWeight[LENET_MNIST_MUTABLE_MEM_SIZE];
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// Statically allocate memory for activations (model intermediate results).
GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
uint8_t activations[LENET_MNIST_ACTIVATIONS_MEM_SIZE];

 
In this sample, we have opted for static allocation of the buffers. If dynamic allocation is necessary, you must 
pay attention to memory alignment. For this purpose, we provide the alignedAlloc function declared in header 
glow_bundle_utils.h. The function takes as parameters the required alignment (in bytes) and the requested 
allocation size. The function returns a pointer to the allocated memory buffer on success and NULL on error. Use 
function alignedFree to deallocate memory previously allocated with alignedAlloc.

  NOTE  

When initializing the constant weights buffer using the *.weights.txt file with the #include pre-processor directive, the 
compilation of the project might fail for large models. This occurs when the file *.weights.txt has a large size (hundreds 
of megabytes) resulting in the compiler remaining out of host memory and crashing while preprocessing the large text 
file. For example, in MCUXpresso IDE, such a compile-time error might look like this:

cc1.exe: out of memory allocating 268439551 bytes
make: *** [source/subdir.mk:43: source/main_v1.o] Error 1
"make -r -j8 all" terminated with exit code 2. Build might be incomplete.   

One way to solve this error is to use the binary weights file *.weights.bin instead of the text file by encapsulating it 
in an assembly source file (named for example include_weights.s) and adding the file to the project source code. The 
assembly file might look like this:

#if defined(__GNUC__)
  .section .weights , "ax" @progbits @preinit_array
  .global constantWeight
  .type constantWeight, %object
  .align 6
 constantWeight:
  .incbin "lenet_mnist.weights.bin"
  .end
 #endif

The above assembly source code defines a memory section named .weights in which a global variable named 
constantWeight (same as before) is allocated with an alignment of 64 bytes (2 to the power of 6) and is initialized 
with the content of the binary file lenet_mnist.weights.bin using the .incbin assembly directive. After this source code is 
added to project, the global variable can be referenced from a C source file by adding the following declaration:

extern uint8_t constantWeight[]; 

4. Use GLOW_GET_ADDR macro to obtain the absolute address for each of the mutable weights of the model (model 
inputs & outputs).

Example: Obtaining the addresses for the model input and output

// Bundle input data absolute address.
uint8_t *inputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_data);

// Bundle output data absolute address.
uint8_t *outputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_softmax);

5. Initialize the model input. In a real scenario, the user code obtains the input data for the inference through an 
acquisition procedure from sensors. For example, cameras or transmitted from other devices through wired or wireless 
communication. For simplicity, in this example we provide a buffer imageData which is statically initialized with a 
sample image. The buffer is initialized using the text file input_image.inc produced by a Python script by reading, 
preprocessing, and serializing a sample png image. In this example, copy the data from the initialized buffer imageData 
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to the inputAddr buffer where the inference function expects to find the input. In a real application, the user can avoid 
this copy by filling directly the buffer pointed to by inputAddr.

Example: Application buffer with static allocation and initialization with serialized data 

uint8_t imageData[] = {
#include "input_image.inc"
};

Example: Serializing an image as text file using Python script

python scripts\glow_process_image.py ^
    -image-path=model\dataset\9_1088.png ^
    -output-path=source\input_image.inc ^
    -image-mode=0to1 -image-layout=NCHW -image-channel-order=RGB

Example: Initializing the model input

memcpy(inputAddr, imageData, sizeof(imageData));

 
When generating the input data, it is important to preprocess it before running inference. In the sample application 
projects delivered with the MCUXpresso SDK. There is a Python script (glow_process_image.py) in the project 
scripts subfolder that generates the C array representation of the preprocessed input image.

  NOTE  

6. Now everything is prepared to run inference by passing the three memory buffers initialized above to the bundle 
entry-point function.

Example: Calling the inference function

lenet_mnist(constantWeight, mutableWeight, activations);

7. After running the inference, the results are available in the outputAddr buffer. Since LeNet is a hand-written digit 
classification model, the result is an array of 10 floating-point numbers. Each number representing the confidence score 
for each of the 10 digits (0 to 9). For convenience, provide the code which prints the class and the confidence score for 
the most certain class (with maximum confidence, also known as top1).

Example: Processing the inference result 

// Get classification top1 result and confidence
float *out_data = (float*)(outputAddr);
float max_val = 0.0;
uint32_t max_idx = 0;
for(int i = 0; i < LENET_MNIST_OUTPUT_CLASS; i++) {
if (out_data[i] > max_val) {
max_val = out_data[i];
max_idx = i;
}
}
// Print classification results
PRINTF("Top1 class = %lu\r\n", max_idx);
PRINTF("Confidence = 0.%03u\r\n",(int)(max_val*1000));

 
The instructions described above apply for integrating the bundle generated for the LeNet model for RT1050/
RT1060/RT1064/RT1160/RT1170 boards. For instructions related to the RT600 board where some minor 
differences apply you can access the RT685 Lab guide available here. Also you can find additional information 
about the memory usage for Glow applications here.

  NOTE  
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5.3 Other optimizations
Since the i.MX RT devices also have available small but fast memory units called TCM (Tightly Coupled Memory), Glow has 
the capability to use such fast memories to optimize the performance. For example, the i.MX RT 1052 has the following TCM 
units: DTC (128 kB), ITC (128 kB), and OCRAM (256 kB). To be noted that the smaller memories are commonly faster that the 
bigger ones.

In order to use TCM, when compiling the bundle using the model-compiler tool, the user must provide the information about the 
number and the size of all the available TCM memories in the decreasing order of their priority (a memory which is listed first is 
used before the other if the size allows it). This means that the memories should be listed in the decreasing order of their speed 
for best performance. For example, for the i.MX RT 1052, the model-compiler tool is provided with the -tcm-size option which 
specifies the TCM sizes as a comma-separated list of integer values (the sizes are expressed in bytes):

-tcm-size=131072,126976,262144

To be noted that the above sizes correspond (in order) to the DTC size (128 kB), the ITC size minus the stack size (128 kB minus 
4 kB) and the OCRAM size (256 kB). We do not provide the entire ITC memory to Glow because part of it (4 kB) we use for stack 
which is recommended in most cases. Glow tries to use DTC first, ITC second, and OCRAM last (depending on whether a given 
memory can accommodate a given computation).

The generated bundle contains the following extra content in the auto-generated header file <model_name>.h:

extern uint8_t *glow_tcm_addr[];

What this means is that the Glow bundle now expects some information from the user application about the locations (base 
addresses) for each of the TCM memories through a symbol glow_tcm_addr which is an array of raw pointers. In order to 
provide the base addresses of the TCM memories, the user must perform the following steps (this example is provided only for 
MCUXpresso IDE although for other IDEs the steps should be similar):

1. Define a section for each TCM memory. In the picture below we can see that we define the sections .tcm_dtc, .tcm_itc, 
and .tcm_oc for DTC, ITC and OCRAM. We also see that the stack is allocated in ITC (recommended).

2. Allocate one buffer in each section:

__attribute__((section(".tcm_dtc")))
uint8_t dtc_memory[128 * 1024];
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__attribute__((section(".tcm_itc")))
uint8_t itc_memory[128 * 1024 – 4 * 1024];

__attribute__((section(".tcm_oc")))
uint8_t oc_memory[256 * 1024];

3. Provide to the bundle the base address of each TCM memory by defining the glow_tcm_addr array of pointers.

uint8_t *glow_tcm_addr[] = {dtc_memory, itc_memory, oc_memory};

The TCM usage configuration presented above is an example of how to use the maximum amount of TCM available and 
also how to place the stack on the ITC for the i.MX RT 1050 board. For practical reasons, we do not need to use all the 
TCM to have best performance and also not always placing the stack on the ITC provides best results. Table 2 provides 
the recommended usage configuration for each board.

Table 2. Recommended usage configuration

Boards Available TCM Recommended TCM usage Stack in ITC

i.MX RT 1050 128 kB (DTC) 128 kB (ITC) 
256 kB (OCRAM)

128 kB (DTC) Yes

i.MX RT 1060 128 kB (DTC) 128 kB (ITC) 
768 kB (OCRAM)

128 kB (DTC) No

i.MX RT 1064 128 kB (DTC) 128 kB (ITC) 
768 kB (OCRAM)

128 kB (DTC) No

i.MX RT 1160 256 kB (DTC) 256 kB (ITC) 64 
kB (OCRAM1)

256 kB (DTC) No

i.MX RT 1170 256 kB (DTC) 256 kB (ITC) 
512 kB (OCRAM1)

256 kB (DTC) No

 
The TCM optimizations are currently available only for those layers mapped to the CMSIS-NN optimized 
implementations when using the -use-cmsis option. Therefore, use the option -tcm-size only when using the 
option -use-cmsis.

  NOTE  

6 Utilities
This section describes utilities which can be used to convert, visualize and debug models.

6.1 Model conversion
The Glow compiler currently has support only for Caffe2, ONNX, and TensorFlowLite model formats. Since a lot of well-known 
models are available in other formats, for example TensorFlow, it might be of interest to have some tools to convert models 
between different formats. The most used tools for format conversion are MMDNN and tf2onnx:

• MMDNN: https://github.com/Microsoft/MMdnn

• tf2onnx: https://github.com/onnx/tensorflow-onnx

We will exemplify how to convert a TensorFlow model to ONNX using the MMDNN tool. We will convert a MobileNet V1 image 
classification model which operates on 128 x 128 RGB images and 1001 classes. Download the MobileNet V1 model archive 
from here:

• http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128.tgz

After you install MMDNN run the following command to convert the TensorFlow frozen file mobilenet_v1_0.25_128_frozen.pb to 
the ONNX model file mobilenet_v1_0.25_128_frozen_2018.onnx.
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Example: Convert model from TensorFlow format to ONNX using MMDNN

mmconvert ^
    -sf tensorflow ^
    -iw mobilenet_v1_0.25_128_frozen.pb ^
    --inNodeName input ^    
    --inputShape 128,128,3 ^
    --dstNodeName MobilenetV1/Predictions/Softmax ^
    -df onnx ^
    -om mobilenet_v1_0.25_128_frozen_2018.onnx            

You can find additional models in the links below, either directly in ONNX format or other formats which can be converted to ONNX 
using the conversion tools previously mentioned.

ONNX Model Zoo: https://github.com/onnx/models

MobileNetV1: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

MobileNetV2: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

6.2 Model visualizer
A very popular tool for visualizing the original model before compiling with Glow is Netron which has an online browser version 
here: https://lutzroeder.github.io/netron/. In order to use Netron drag and drop the model file into the browser window.

The Glow compiler integrates the graphviz utility for exporting the graph visual representation of the compiled model in dot 
format. The graph will depict all the optimizations and conversions performed on the original model by Glow including the node 
specializations when using CMSIS-NN or HIFI-NN. Note that the compile command from Example: Compile a float32 model to a 
float32 bundle but with the addition of the -dump-graph-DAG=graph.dot option which exports the graph visual representation in 
the file graph.dot as presented below.

Example: Dump model graph visual representation to DOT file

model-compiler.exe ^
    -model=models\lenet_mnist -model-input=data,float,[1,1,28,28] -emit-bundle=bundle ^
    -backend=CPU -target=arm -mcpu=cortex-m7 -float-abi=hard ^
    -dump-graph-DAG=graph.dot

           

The DOT format is a text description file which can be used to generate visual representations of the graph. We can use the 
“dot.exe” utility (which is installed together with the Glow tools for Windows) to convert the DOT file to PDF or PNG file formats 
as depicted below.

Example: Convert graph DOT format to PDF/PNG format

dot -Tpdf graph.dot -o graph.pdf -Nfontname="Times New Roman,"
dot -Tpng graph.dot -o graph.png -Nfontname="Times New Roman,"            

The model graph representation for LeNet generated as PDF file might be as shown in Figure 16.
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Figure 16. Model graph visualization

7 Note about the source code in the document
Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2019 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that 
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer 
in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products 
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS 
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
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DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8 Revision history
Table 3 summarizes the changes done to the document since the initial release.

Table 3. Revision history

Revision number Date Substantive changes

0 01 September 2019 Initial release with CMSIS-NN support

1 15 April 2020 Updated for HiFi-NN support

2 01 October 2020 Updated for i.MX RT1170 support

3 25 November 2021 Updated for MCUXSDK 2.9.0

4 10 July 2021 Updated for MCUXSDK 2.10.0

5 19 December 2021 Updated for MCUXSDK 2.11.0

6 01 June 2022 Updated for MCUXSDK 2.12.0
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for compliance with all legal, regulatory, and security related requirements 
concerning its products, regardless of any information or support that may be 
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable 
at PSIRT@nxp.com) that manages the investigation, reporting, and solution 
release to security vulnerabilities of NXP products.
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