

MCSXSR1CS12ZVM 3-PHASE MOTOR CONTROL EVALUATION BOARD

The MCSXSR1CS12ZVM evaluation board demonstrates the advantages of the NXP® S12ZVM MCU for 3-phase brushless DC motor (BLDC) and permanent magnet synchronous motor (PMSM) control in high-current applications.

OVERVIEW

The MCSXSR1CS12ZVM evaluation board serves as an example of a high-current motor control design using the S12ZVM family of automotive mixed-signal MCUs based on the 16-bit S12 MagniV® S12Z core and integrates an automotive voltage regulator, a LIN physical interface, and a gate driver unit able to drive up to six external MOSFETs.

KEY FEATURES

- **S12ZVM MCU** 16-bit S12Z-based MCUs with integrated high-voltage capabilities targeted for automotive and high-reliability industrial motor control applications
- Integrated solution Integrated 6-channel gate driver unit to control six power MOSFETs, a 12 V to 5 V voltage regulator and a LIN physical layer
- Automotive motor control algorithm Sensorless control of the PMSM motor based on field-oriented control (FOC) and sensorless control of the BLDC motor based on a six-step commutation control technique that allows torque/speed control with low CPU load
- Automotive Math and Motor Control Library Set control algorithm built on blocks of precompiled software library
- FreeMASTER and Motor Control Application Tuning (MCAT) support – application tuning and variables tracking

3-PHASE MOTOR CONTROL HIGH-CURRENT EVALUATION BOARD WITH \$12ZVM

\$12ZVML128 SPECIFICATIONS

Flash	128 KB	Temp	+150 °C TA/+175 °C TJ	
RAM	8 KB	PMF	6-ch., 15-bit PWM	
EEPROM	512 B	12 V VREG	12 V/70 mA, 170 mA with ballast, 3.5–20 V capable	
Core	S12Z	ADC	2 x 16-ch., 12-bit	
Package	LQFP-64	Trigger Unit	2 x PTU	
LIN-Phy	1	GDU	3/3	
Comms	2 x SCI, 1 x SPI	EVDD	1-ch. 5 V/20 mA (source)	

EVB SPECIFICATIONS

Parameter	Min	Тур	Max	
Supply voltage (*boost option enabled)	3.5*/8 V	12 V	18 V	
Phase current	-	75 A(rms)	120 A(peak)	
Ambient temperature	0 °C	20 °C	45 °C	
Board temperature (passive heat sink)	-	-	150 °C	
Communication (**S12ZVMC used)	LIN/CAN**, USB, SCI, SPI, BDM			
Rotor speed or position sensors	3 Hall switches, resolver			
Digital I/O, debugging	15			

TARGET AUTOMOTIVE APPLICATIONS

- Actuators and valve controls
- Electric fuel, water and oil pumps
- Engine cooling fans
- Windshield wipers
- Heating, ventilation and air conditioning (HVAC)
- Doors, window lift and seat control

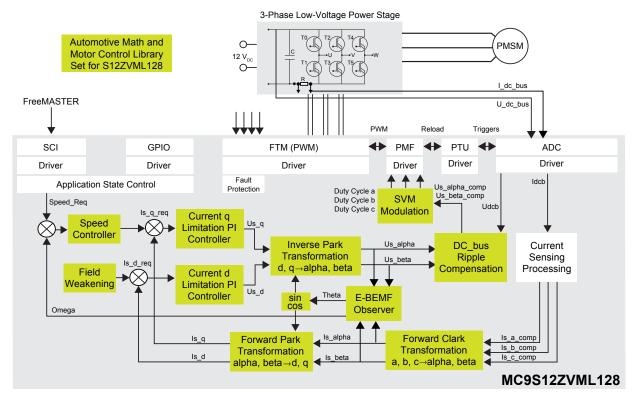
ENABLEMENT TOOLS

Development Hardware:

- 3-phase low-voltage high-current power stage up to 18 V/75 A(rms)
- Single-shunt (DC-link) current sensing
- High-efficiency design up to 75 A(rms) phase current/120 A(peak)
- Onboard OSBDM with USB and virtual RS232 port emulation

Runtime Software:

- Sensorless and Hall-based six-step control of the PM motor
- Software example created in the CodeWarrior® for MCUs (Eclipse IDE) - 11.x
- FreeMASTER 3.x project part of software package
- Motor Control Application Tuning (MCAT) tool support


RESOURCES

MCSXSR1CS12ZVM Evalutation Board nxp.com/MCSXSR1CS12ZVM

S12ZVM Mixed-Signal MCUs nxp.com/s12zvm

S12ZVM Community community.nxp.com

MOTOR CONTROL ALGORITHM CONCEPT

AMMCLib Functions