AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Rev. 1 — 27 March 2023

Application note

Document information

Information	Content
Keywords K32W148, RF system, Bluetooth LE	
Abstract	This document provides the RF evaluation test results of K32W148 EVK board for Bluetooth LE (2FSK modulation) and 802.15.4 (OQPSK modulation) applications.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

1 Introduction

This document provides the RF evaluation test results of the K32W148 EVK board for Bluetooth LE (2FSK modulation) and 802.15.4 (OQPSK modulation) applications. It includes the test setup description and the tools used to perform the tests on your own. To get more K32W148 Bluetooth LE and 802.15.4 radio parameters, see the *K32W14x Data Sheet* (document K32W1480).

For more information about the K32W148-EVK, see the *K32W148-EVK Board User Manual* (document <u>K32W148-EVKUM</u>). Find the schematic and design files at <u>K32W148</u> page.

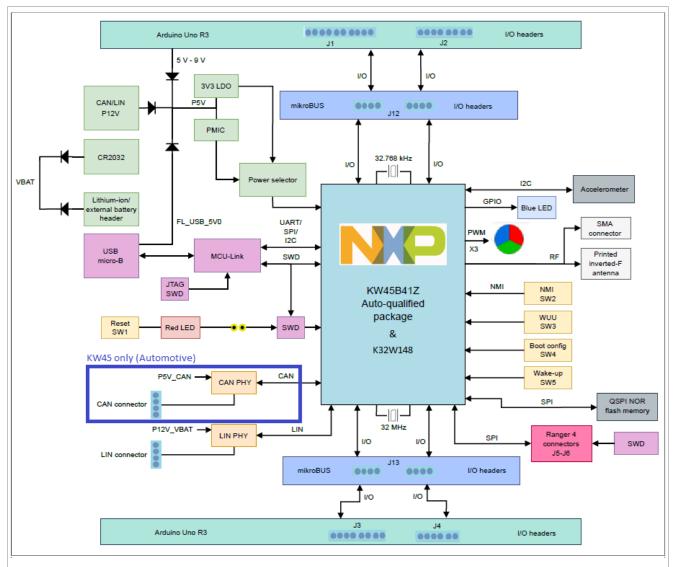


Figure 1. K32W148-EVK block diagram

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Figure 2. K32W148-EVK top-side view

2 Software and list of equipment

Before measuring, load a binary code (connectivity software) into the flash memory of the board.

The Secure and Ultra-Low-Power MCU for Matter over Thread[™] and Bluetooth[®] LE 5.3 webpage describes how to use K32W148-EVK to load the code for the Bluetooth LE or 802.15.4. The binary code used for the following tests is the Connectivity Software package for both Bluetooth LE and 802.15.4. For the explanation settings, see the K32W148 Connectivity Test for 802.15.4 Application (document AN13687) and the HCI_blackbox for Bluetooth LE only. The TERATERM terminal emulator is used to communicate with the K32W1 MCU.

2.1 List of equipment for Bluetooth

The equipment is used to perform the RX and TX measurements.

- 1. Spectrum analyzer: 25 GHz for harmonic measurements up to H10
- 2. R and S SFU, used as an interferer source for 802.15.4, could be any generator with ARB
- 3. MXG (Agilent N5182A)
- 4. R&S CMW270 (HCI_bbx software)
- 5. Agilent SML03
- 6. Agilent 33250A
- 7. R&S ZND vector network analyzer: for S11 measurements
- 8. RF Shielded box (to avoid interferers) and RF horn (for radiated measurements)
- 9. Power supply
- 10. PC equipped with a GPIB card

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

2.2 List of equipment for 802.15.4

- 1. R&S FSV: spectrum analyzer with 802.15.4 PHY test option
- 2. Keysight N5182B could be any generator with ARB
- 3. Keysight E8267D, used as an interferer source for 802.15.4, could be any generator with ARB
- 4. Spectrum analyzer: 25 GHz for harmonic measurements up to H10
- 5. R&S ZND vector network analyzer: for S11 measurements
- 6. Shielded room

Note: The K32W148 EVK VV21290023 is used to perform all 802.15.4 RF test measurements.

3 Bluetooth LE application

3.1 List of tests

Conducted tests

- TX tests
 - Bench setup
 - Frequency accuracy
 - Phase noise
 - TX power Bluetooth LE 1 Msps, 2 Msps, 500 ksps (LR S=2), 125 ksps (LR S=8)
 - TX power in-band
 - TX spurious (H2 to H10, ETSI, and FCC)
 - Lower band edge (MIIT-China)
 - Upper band edge
 - Maximum TX output power 1 Msps, 2 Msps, 500 ksps (LR S=2), 125 ksps (LR S=8)
 - Bluetooth LE TX output spectrum 1 Msps, 2 Msps
 - Modulation characteristics 1 Msps, 2 Msps, 125 ksps LR (S=8)
 - Carrier frequency offset and drift 1 Msps, 2 Msps, 125 ksps LR (S=8)
- RX tests
 - Bench setup
 - Sensitivity 1 Msps, 2 Msps, LR (S=2 and S=8)
 - Bathtub 1 Msps, 2 Msps, LR (S=2 and S=8)
 - Receiver maximum input level 1 Msps, 2 Msps, LR (S=2 and S=8)
 - RX spurious (from 30 MHz to 12.5 GHz)
 - Receiver interference rejection performances
 - Adjacent, Alternate, and Co channel rejection 1 Msps, 2 Msps, 500 ksps (LR S=2), 125 ksps (LR S=8)
 - Receiver blocking 1 Msps cat.1 and cat.2
 - Blocking interferers
 - Intermodulation

3.2 Test summary

RF PHY Bluetooth Test Specification: RF-PHY.TS.5.0.2 (2017-12-07)

The list of measurements is given in <u>Table 1</u> for Europe and <u>Table 2</u> for US.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 1. List of tests (Europe)

		Reference	Limit	Status
	TX maximum Output Power	Bluetooth LE 5.0, BV-01-C	-20 dBm ≤ PAVG ≤ +10 dBm EIRP	PASS
	TX power in-band – 1	Bluetooth LE 5.0,	$P_{TX} \le -20$ dBm for ($f_{TX} +/- 2$ MHz)	PASS
	Msps	BV-03-C	$P_{TX} \le -30 \text{ dBm for } (f_{TX} +/-[3 + n] \text{ MHz}]);$	FAGG
	TX power in-band – 2	Bluetooth LE 5.0,	P_{TX} <= -20 dBm for (f_{TX} +/- 4 MHz) and (f_{TX} +/- 5 MHz)	PASS
	Msps	BV-08-C	$P_{TX} \le -30 \text{ dBm for } (f_{TX} +/-[3 + n] \text{ MHz}]);$	PASS
	Modulation characteristics 1 Msps LE coded (S=8)	Bluetooth LE 5.0, BV-05-C Bluetooth LE 5.0, BV-13-C	225 kHz <= delta f1avg <= 275 kHz	PASS
	Modulation characteristics 2 Msps	Bluetooth LE 5.0, BV-10-C	450 kHz <= delta f1avg <= 550 kHz	PASS
Transmission	Carrier frequency offset and drift 1 Msps	Bluetooth LE 5.0, BV-06-C	$\begin{split} f_{TX} - 150 \text{ kHz} &<= \text{fn} <= f_{TX} + \\ 150 \text{ kHz} \\ \text{where } f_{TX} \text{ is the nominal} \\ \text{transmit frequency} \\ \text{and } n = 0,1,2,3k \\ f0 - \text{fn} &<= 50 \text{ kHz} \\ \text{where } n = 2,3,4k \end{split}$	PASS
	Carrier frequency offset and drift 2 Msps	Bluetooth LE 5.0, BV-12-C	f0 - f3 <= 19.2 kHz f0 - f(n-3) <= 19.2 kHz where n=7,8,9,k	PASS
	Carrier frequency offset and drift LE coded (S=8)	Bluetooth LE 5.0, BV-14-C	$\begin{split} f_{TX} - 150 \text{ kHz} &<= \text{fn} <= f_{TX} + \\ 150 \text{ kHz} \\ \text{where } f_{TX} \text{ is the nominal} \\ \text{transmit frequency and} \\ \text{n=0,1,2,3k} \\ \text{f0} - \text{fn} &<= 50 \text{ kHz} \\ \text{where n=2,3,4k} \end{split}$	PASS
	Spurious 30 MHz - 1 GHz	ETSI EN 300 328 v2.2.1 (2019-04)	-36 dBm or -54 dBm (depends on frequency) (100 kHz BW)	PASS
	Spurious 1 GHz - 25 GHz	ETSI EN 300 328 v2.2.1 (2019-04)	-30 dBm (1 MHz BW)	PASS
	Eirp TX spectral density	ETSI EN 300 328 v2.2.1 (2019-04)	10 dBm/MHz	PASS
	Phase noise (unspread)	NA	NA	For information
Reception	RX sensitivity - 1 Msps	Bluetooth LE 5.0, BV-01-C	PER 30.8 % with a minimum of 1500 packets	PASS

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

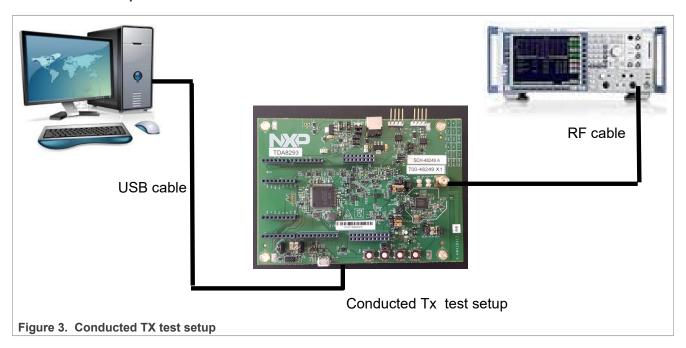
Table 1. List of tests (Europe)...continued

RX sensitivity - 2 Msps Bluetooth LE 5.0, BV-08-C PER 30.8 % with a minimum of 1500 packets PASS	Table 1. List of tests (Luio	po)continucu	Poforonoo	l imit	Status
RX sensitivity - LE Bluetooth LE 5.0, PER 30.9 % with a minimum of 1500 packets PASS			Reference	Limit	Status
Coded (S=2) BV-26-C of 1500 packets PASS		RX sensitivity - 2 Msps		1	PASS
Co-channel - 1 Msps			1		PASS
Co-channel - 1 Msps					PASS
Adjacent channel interference rejection (N+/-2,4,6+MHz) - 2 Bluetooth LE 5.0, BV-09-C Stable 1.0 Bluetooth LE 5.0, BV-09-C Stable 1.0 St		Co-channel - 1 Msps		> 21 dB	PASS
Interference rejection (N+/-2,4,6+MHz) - 2 Msps		Co-channel - 2 Msps		> 21 dB	PASS
Adjacent channel interference rejection (N+2-4,46+MHz) LE coded (S=2)		interference rejection (N+/-2,4,6+MHz) - 2		> 15 dB, -17 dB, -27 dB	PASS
Interference rejection (N+/-2,4,6+ MHz) LE coded (S=2)		_		> 17 dB	PASS
Adjacent channel interference rejection (N+/-2,4,6+ MHz) LE coded (S=8) Bluetooth LE 5.0, BV-09-C S dBm (30 MHz-2 GHz and 3-12.5 GHz) PASS		interference rejection (N+/-2,4,6+ MHz) LE		> 11 dB, -21 dB, -31 dB	PASS
Interference rejection (N+/-2,4,6+ MHz) LE coded (S=8) Bluetooth LE 5.0, BV-09-C S d dB, -26 dB, -36 dB PASS		1		> 12 dB	PASS
1 Msps		interference rejection (N+/-2,4,6+ MHz) LE		> 6 dB, -26 dB, -36 dB	PASS
1 Msps		Blocking interferers			
2 Msps Bluetooth LE 5.0, BV- 010-C and 2484-2997 MHz		1 Msps			D4.00
1 Msps Bluetooth LE 5.0, BV-05-C PER 30.8 % with a minimum of 1500 packets PASS 2 Msps Bluetooth LE 5.0, BV-11-C RX maximum input level 1 Msps Bluetooth LE 5.0, BV-06-C PER 30.8 % with a minimum of 1500 packets PASS PASS PASS		2 Msps		1	PASS
BV-05-C 2 Msps Bluetooth LE 5.0, BV-11-C RX maximum input level 1 Msps Bluetooth LE 5.0, BV-06-C 2 Msps Bluetooth LE 5.0, BV-06-C PER 30.8 % with a minimum of 1500 packets PASS PASS PASS PASS		Intermodulation			
2 Msps Bluetooth LE 5.0, BV-11-C Of 1500 packets		1 Msps		PER 30.8 % with a minimum	DASS
1 Msps Bluetooth LE 5.0, BV-06-C PER 30.8 % with a minimum of 1500 packets PASS RX emissions 30 MHz Bluetooth LE 5.0, BV-12-C PER 30.8 % with a minimum of 1500 packets PASS		2 Msps		of 1500 packets	rass
1 Misps		RX maximum input leve	ıl		
2 Msps Bluetooth LE 5.0, BV-12-C RX emissions 30 MHz ETSI EN 300 328 -57 dBm (100 kHz) PASS		1 Msps			PASS
1-57 dBm (100 kHz) PASS		2 Msps		of 1500 packets	1 A00
VZ.Z.1 (2010 07)		RX emissions 30 MHz - 1 GHz	ETSI EN 300 328 v2.2.1 (2019-04)	-57 dBm (100 kHz)	PASS

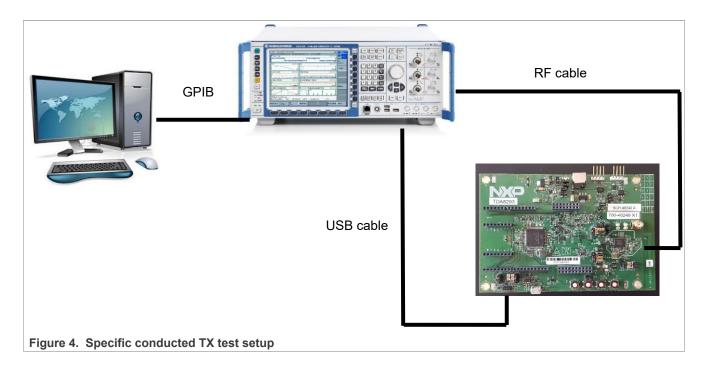
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 1. List of tests (Europe)...continued

		Reference	Limit	Status	
	RX emissions 1 GHz - 12.5 GHz	ETSI EN 300 328 v2.2.1 (2019-04)	-47 dBm (1 MHz)	PASS	
Misc.	Return loss (S11)	Return loss in TX mode	For information		
IVIISC.	- Netuiii 1055 (311)	Return loss in TX mode	For information		


Table 2. List of tests (US)

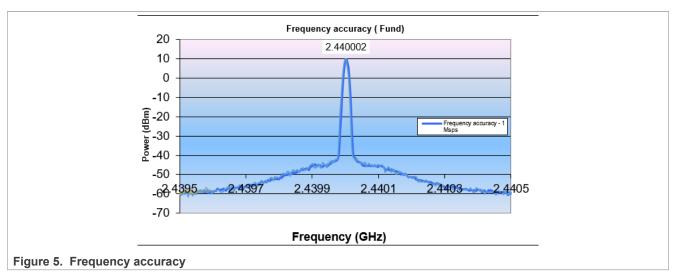
		Reference	Limit	Status
	TX maximum power	FCC part15.247	PAVG ≤ 100 mW +20 dBm EIRP	PASS
Transmission	Spurious 1 GHz - 25 GHz	FCC part15.249	field strength < 50 mV/m @3m -41.12 dBm (1 MHz BW)	PASS


3.3 Conducted tests

3.3.1 TX tests

3.3.1.1 Test setup

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications



3.3.1.2 Frequency accuracy

Test method:

- Set the radio to:
 - TX mode
 - CW
 - Continuous mode
 - Frequency: Channel 19
- Set the analyzer to:
 - Center frequency = 2.44 GHz
 - Span = 1 MHz
 - Ref amp = 20 dBm
 - **–** RBW = 10 kHz
 - **–** VBW = 100 kHz
- Measure the CW frequency with the marker of the spectrum analyzer.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

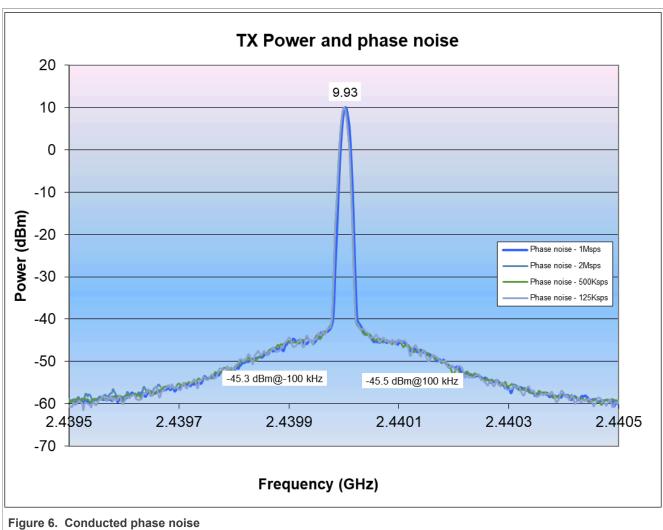
- Measured frequency: 2.44004 GHz
- ppm value = (2.440020-2.440000)/2.440 = +0.8 ppm

Table 3. Frequency accuracy

Result	Target
+0.8 ppm	+/-25 ppm

The frequency accuracy depends on the XTAL model. The model used on EVK is NX2016SA EXS00A-CS14160 (NDK).

Conclusion:


• The frequency accuracy complies with the data sheet.

3.3.1.3 Phase noise

Test method:

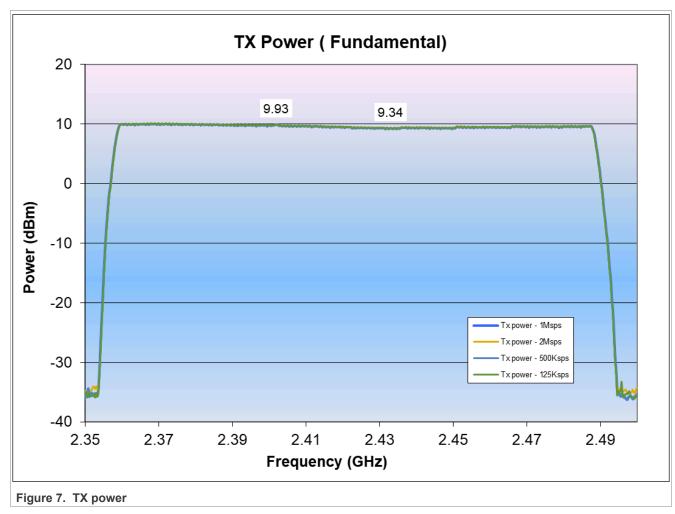
- · Set the radio to:
 - TX mode
 - CW
 - Continuous mode
 - Frequency: Channel 19
- Set the analyzer to:
 - Center frequency = 2.44 GHz
 - Span = 1 MHz
 - Ref amp = 20 dBm
 - **–** RBW = 10 kHz
 - **–** VBW = 100 kHz
- Measure the CW frequency with the marker of the spectrum analyzer.
 - RBW (spectrum analyzer) = 10 kHz (20 log(10 kHz) = 40 dBc)

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Marker value (delta) = -45.3 dBm/100 kHz = -95.3 dBc/Hz

Note: The phase noise is just for informational purposes. No specific issue on this parameter.

3.3.1.4 TX power (fundamental)


Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
 - Data rate: 1 Msps, 2 Msps, 500 ksps, 125 ksps for Bluetooth LE
- Set the analyzer to:
 - Start freq = 2.4 GHz
 - Stop freq = 2.5 GHz
 - Ref amp = 10 dBm
 - Sweep time = 100 ms
 - RBW = 3 MHz
 - VBW = 3 MHz

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Max Hold mode
- Detector = RMS
- Sweep all the channels from channel 0 to channel 39 for Bluetooth LE and channel.
 - Software tools allow sweep from 2.36 GHz to 4.88 GHz

Result:

- Maximum power is on channel 0: 9.93 dBm
- Minimum power is on channel 15: 9.34 dBm
- Tilt over frequencies is: 0.6 dB

Conclusion:

- The default TX power is in line with the expected results.
- · The power is flat over frequencies

3.3.1.5 TX power in-band

Test method:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- · Set the radio to:
 - TX mode, modulated, continuous mode, data rate (1 Msps, 2 Msps, 500 ksps, 125 ksps)
- · Set the analyzer to:
 - Start freq = 2.35 GHz, Stop freq = 2.5 GHz, Ref amp = 10 dBm, sweep time = 100 ms
 - RBW = 100 kHz, Video BW = 300 kHz
 - Max Hold mode
 - Detector = RMS
 - Number of Sweeps = 10
- Sweep on channel 2, channel 19, and channel 37

Result:

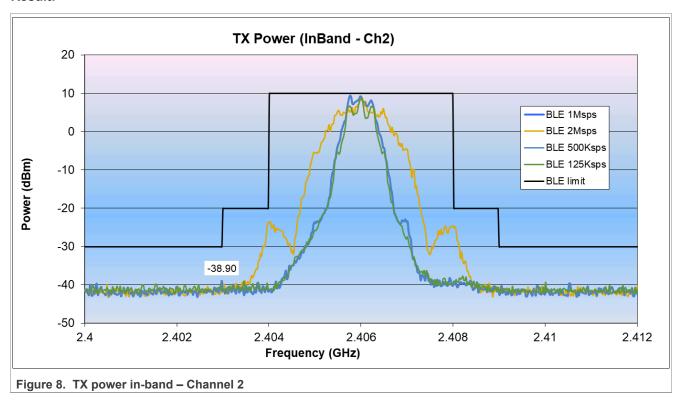


Table 4. Bluetooth LE 1 Msps

Max peak level <=-2 MHz	-39.43	dBm	@	2.404	GHz
Max peak level >=+2 MHz	-38.84	dBm	@	2.408	GHz
Max peak level <=-3 MHz	-38.90	dBm	@	2.403	GHz
Max peak level >=+3 MHz	-39.62	dBm	@	2.411	GHz

Table 5. Bluetooth LE 2 Msps

Max peak level <=-2 MHz	-23.71	dBm	@	2.404	GHz
Max peak level >=+2 MHz	-24.88	dBm	@	2.408	GHz
Max peak level <=-3 MHz	-40.06	dBm	@	2.400	GHz
Max peak level >=+3 MHz	-40.27	dBm	@	2.412	GHz

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 6. Bluetooth LE 500 ksps

Max peak level <=-2 MHz	-39.43	dBm	@	2.404	GHz
Max peak level >=+2 MHz	-38.84	dBm	@	2.408	GHz
Max peak level <=-3 MHz	-38.90	dBm	@	2.403	GHz
Max peak level >=+3 MHz	-39.62	dBm	@	2.411	GHz

Table 7. Bluetooth LE 125 ksps

Max peak level <=-2 MHz	-39.10	dBm	@	2.403	GHz
Max peak level >=+2 MHz	-37.76	dBm	@	2.408	GHz
Max peak level <=-3 MHz	-39.93	dBm	@	2.402	GHz
Max peak level >=+3 MHz	-39.35	dBm	@	2.410	GHz

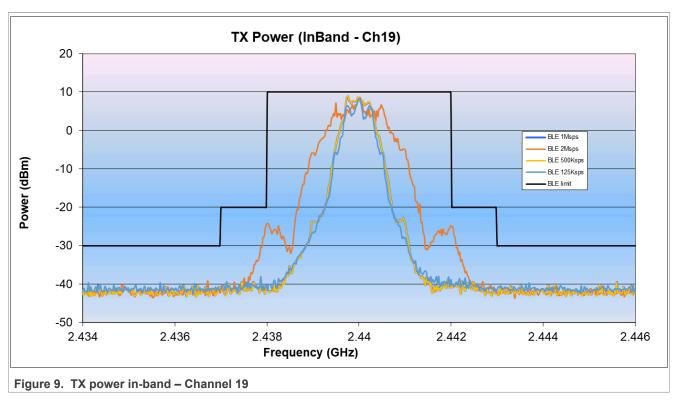


Table 8. Bluetooth LE 1 Msps

Max peak level <=-2 MHz	-39.43	dBm	@	2.437	GHz
Max peak level >=+2 MHz	-39.37	dBm	@	2.442	GHz
Max peak level <=-3 MHz	-40.22	dBm	@	2.436	GHz
Max peak level >=+3 MHz	-39.49	dBm	@	2.446	GHz

Table 9. Bluetooth LE 2 Msps

•					
Max peak level <=-2 MHz	-24.58	dBm	@	2.438	GHz

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 9. Bluetooth LE 2 Msps...continued

Max peak level >=+2 MHz	-25.11	dBm	@	2.442	GHz
Max peak level <=-3 MHz	-39.18	dBm	@	2.437	GHz
Max peak level >=+3 MHz	-40.54	dBm	@	2.445	GHz

Table 10. Bluetooth LE 500 ksps

Max peak level <=-2 MHz	-39.43	dBm	@	2.437	GHz
Max peak level >=+2 MHz	-39.37	dBm	@	2.442	GHz
Max peak level <=-3 MHz	-40.22	dBm	@	2.436	GHz
Max peak level >=+3 MHz	-39.49	dBm	@	2.446	GHz

Table 11. Bluetooth LE 125 ksps

Max peak level <=-2 MHz	-38.04	dBm	@	2.438	GHz
Max peak level >=+2 MHz	-38.39	dBm	@	2.442	GHz
Max peak level <=-3 MHz	-39.60	dBm	@	2.434	GHz
Max peak level >=+3 MHz	-39.63	dBm	@	2.444	GHz

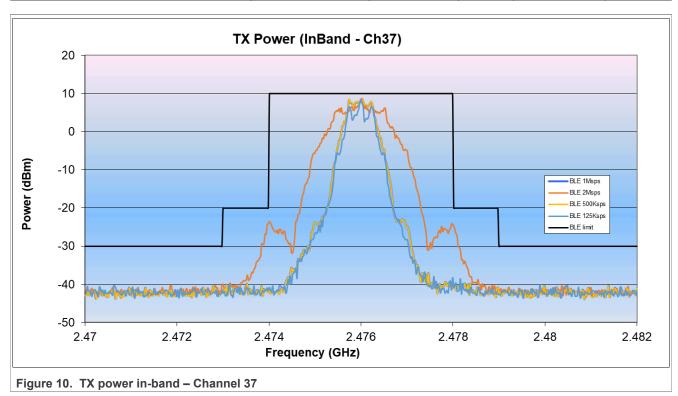


Table 12. Bluetooth LE 1 Msps

Max peak level <=-2 MHz	-39.93	dBm	@	2.474	GHz
Max peak level >=+2 MHz	-39.75	dBm	@	2.478	GHz
Max peak level <=-3 MHz	-40.56	dBm	@	2.473	GHz

AN13728

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 12. Bluetooth LE 1 Msps...continued

Max peak level >=+3 MHz	-40.35	dBm	@	2.481	GHz

Table 13. Bluetooth LE 2 Msps

Max peak level <=-2 MHz	-24.10	dBm	@	2.474	GHz
Max peak level >=+2 MHz	-24.69	dBm	@	2.478	GHz
Max peak level <=-3 MHz	-39.96	dBm	@	2.473	GHz
Max peak level >=+3 MHz	-40.21	dBm	@	2.480	GHz

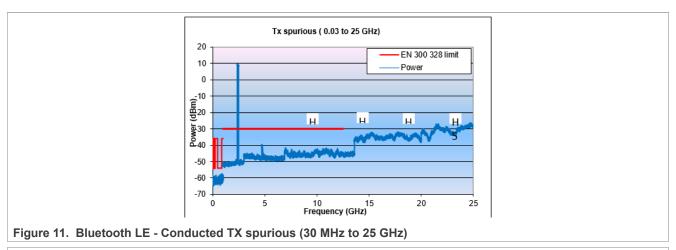
Table 14. Bluetooth LE 500 ksps

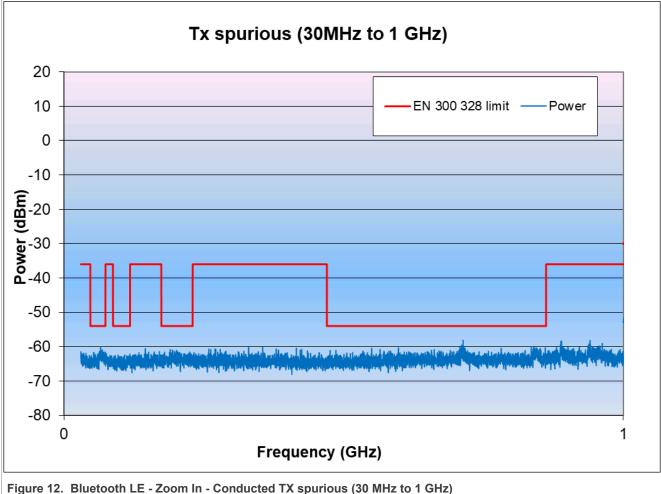
Max peak level <=-2 MHz	-39.93	dBm	@	2.474	GHz
Max peak level >=+2 MHz	-39.75	dBm	@	2.478	GHz
Max peak level <=-3 MHz	-40.56	dBm	@	2.473	GHz
Max peak level >=+3 MHz	-40.35	dBm	@	2.481	GHz

Table 15. Bluetooth LE 125 ksps

Max peak level <=-2 MHz	-40.15	dBm	@	2.473	GHz
Max peak level >=+2 MHz	-38.53	dBm	@	2.478	GHz
Max peak level <=-3 MHz	-40.24	dBm	@	2.471	GHz
Max peak level >=+3 MHz	-40.15	dBm	@	2.480	GHz

Conclusion:


• These results are compliant to Bluetooth LE 5.0.


3.3.1.6 TX spurious

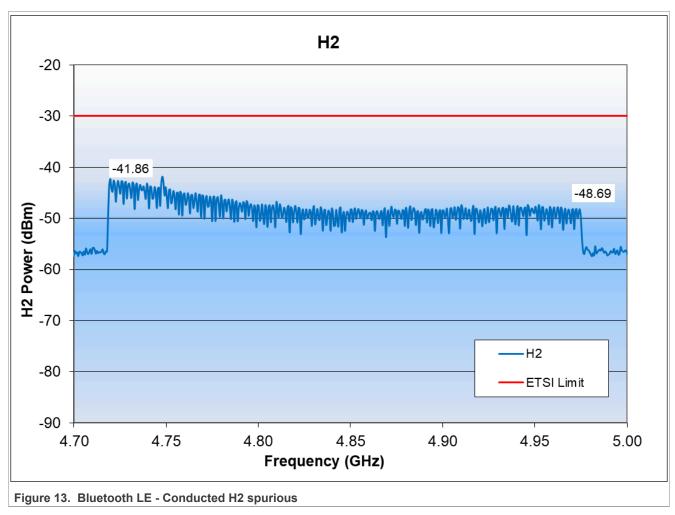
3.3.1.6.1 30 MHz to 25 GHz

Spurious overview of the full band from 30 MHz to 25 GHz when the device is in the transmission mode.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- There are no TX spurs above the EN 300 328 limit (more than 4 dB margin).
- Harmonics are measured in the following paragraphs.


K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

3.3.1.6.2 H2 (ETSI test conditions, peak measurement)

Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- Set the analyzer to:
 - Start freq = 4.7 GHz
 - Stop freq = 5 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz, VBW = 3 MHz
 - Max Hold mode
 - Detector: Peak
- Sweep all the channels from
 - Bluetooth LE: Channel 0 to Channel 39

Result:

• Maximum power is at frequency 4.748 GHz: -41.86 dBm.

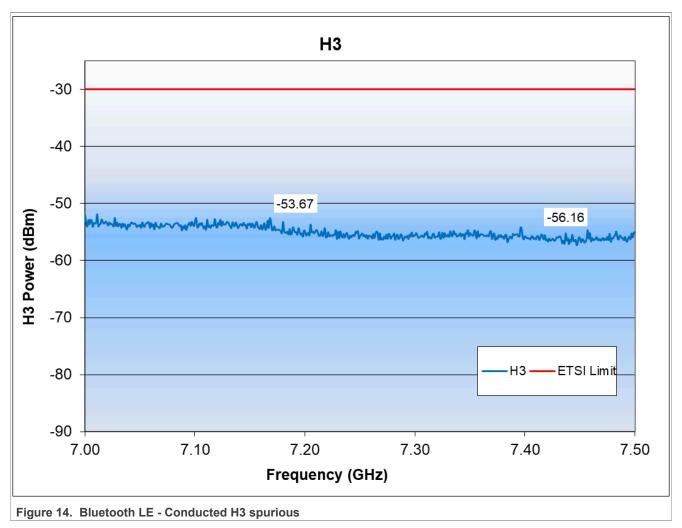
AN13728

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:


• There is more than 11 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.3 H3 (ETSI test conditions, peak measurement)

Test method:

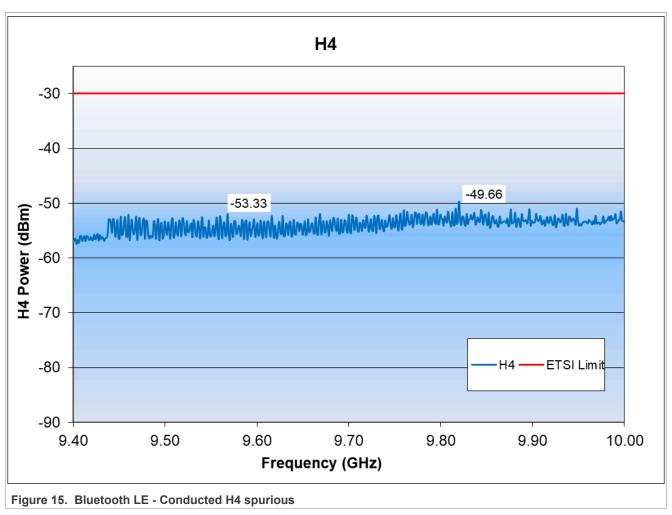
The same method as for H2, except that the spectrum analyzer frequency start/stop is set to 7.0 GHz and 7.5 GHz.

Result:

• Maximum power is at frequency 7.098 GHz: -53.67 dBm.

Conclusion:

• There is more than 23 dB margin for Bluetooth LE to the ETSI limit.


3.3.1.6.4 H4 (ETSI test conditions, peak measurement)

Test method:

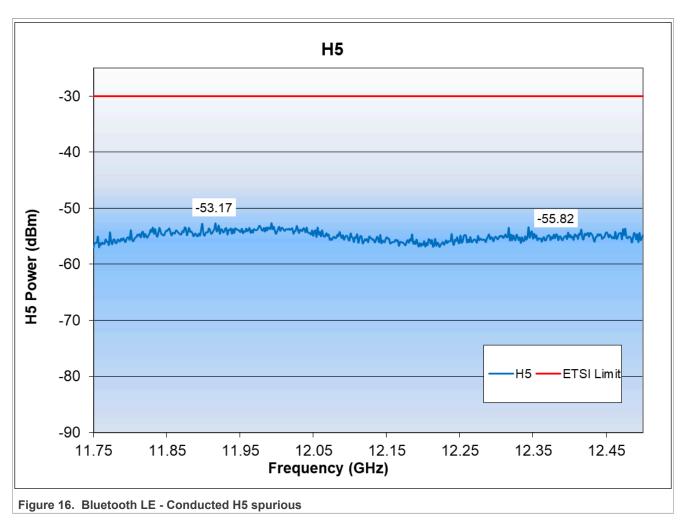
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

The same method as for H2, except that the spectrum analyzer frequency span is set from 9.4 GHz to 10.0 GHz.

Result:

• Maximum power is at frequency 9.82 GHz: -49.66 dBm.

Conclusion:


• There is more than 19 dB margin for Bluetooth LE to the ETSI limit.

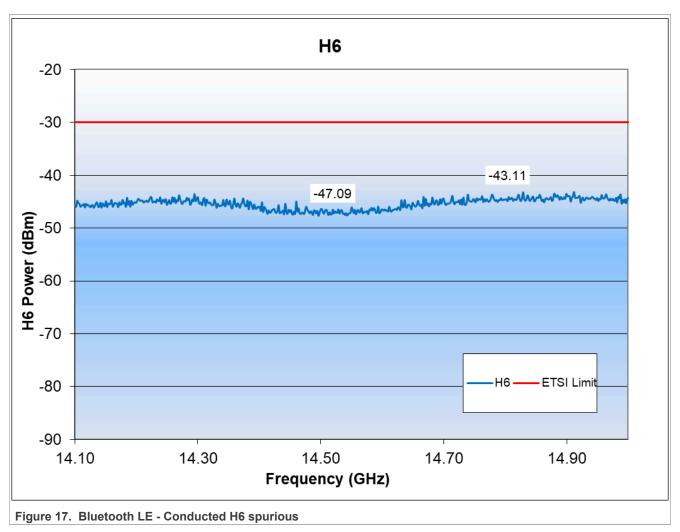
3.3.1.6.5 H5 (ETSI test conditions, peak measurement)

Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

• Maximum power is at frequency 12.0275 GHz: -53.17 dBm.

Conclusion:


• There is more than 23 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.6 H6 (ETSI test conditions, peak measurement)

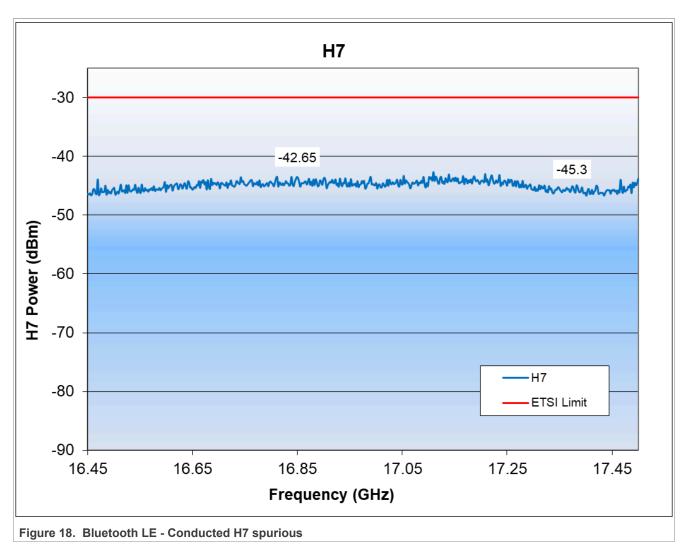
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz. **Result:**

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 14.9118 GHz: -43.11 dBm.

Conclusion:


• There is more than 13 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.7 H7 (ETSI test conditions, peak measurement)

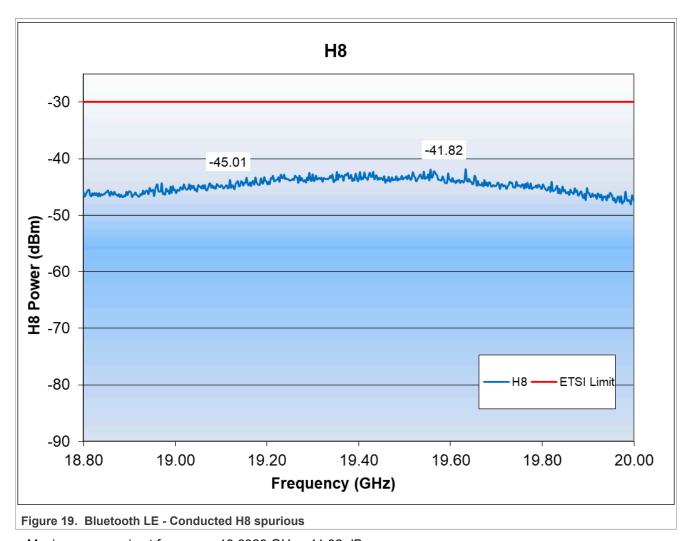
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 17.1199 GHz: -42.65 dBm.

Conclusion:


• There is more than 12 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.8 H8 (ETSI test conditions, peak measurement)

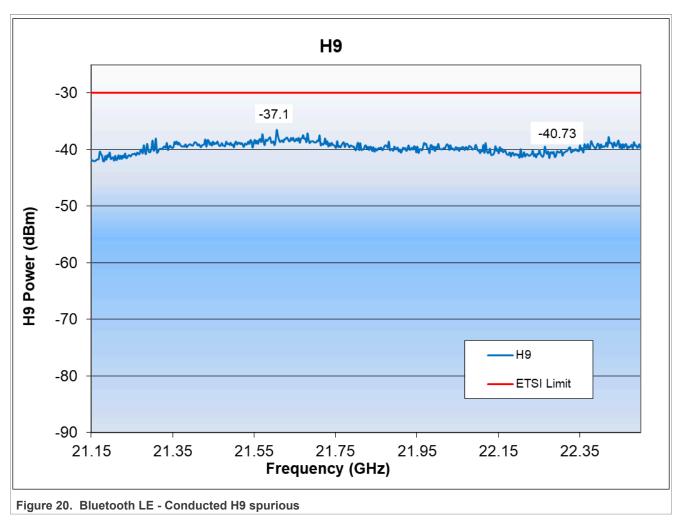
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 19.6328 GHz: -41.82 dBm.

Conclusion:


• There is more than 11 dB margin for Bluetooth LE to the ETSI limit.

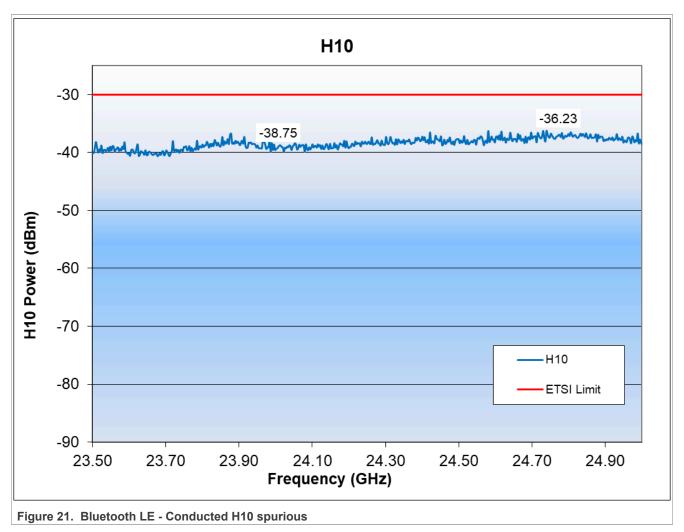
3.3.1.6.9 H9 (ETSI test conditions, peak measurement)

Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz.

• Maximum power is at frequency 21.6819 GHz: -37.1 dBm.

Conclusion:


• There is more than 7 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.10 H10 (ETSI test conditions, peak measurement)

Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz.

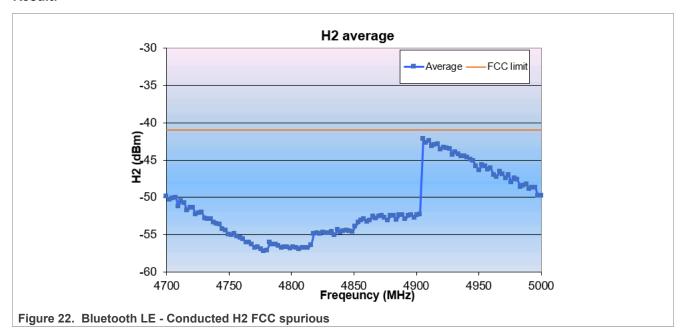
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 24.739 GHz: -36.23 dBm.

Conclusion:

• There is more than 6 dB margin for Bluetooth LE to the ETSI limit.

3.3.1.6.11 H2 (FCC test conditions, average measurements)


Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- Set the analyzer to:
 - Start freq = 4.7 GHz
 - Stop freq = 5 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 1 MHz
 - VBW = 3 MHz

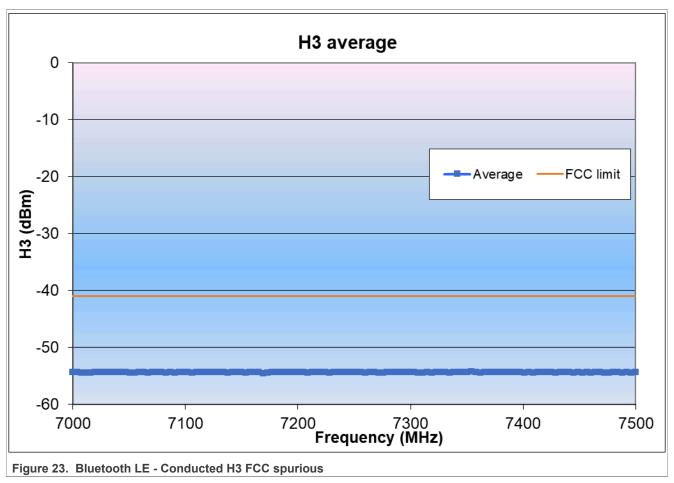
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Max Hold modeDetector: RMS
- · Sweep all the channels from
 - Bluetooth LE: Channel 0 to Channel 39

Result:

• Maximum power is at frequency 4.906 GHz: -42.14 dBm.

Conclusion:


• There is more than 1 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.12 H3 (FCC test conditions, average measurements)

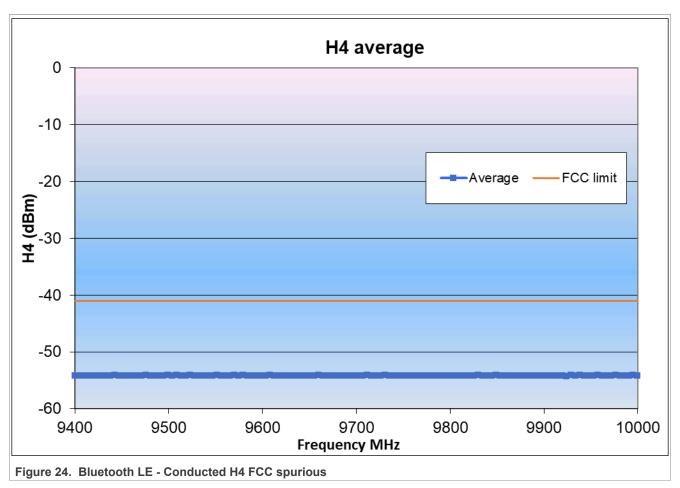
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 7.0 GHz to 7.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 7.354 GHz: -54.27 dBm.

Conclusion:


• There is more than 13 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.13 H4 (FCC test conditions, average measurements)

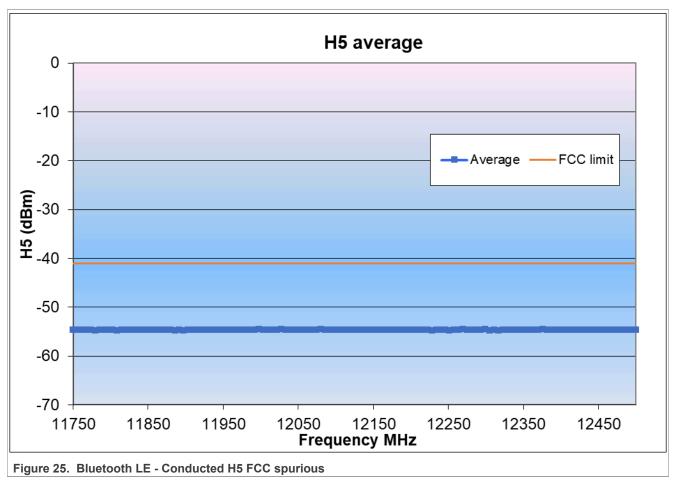
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 9.4 GHz to 10 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 9.939 GHz: -54.09 dBm.

Conclusion:


• There is more than 5 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.14 H5 (FCC test conditions, average measurements)

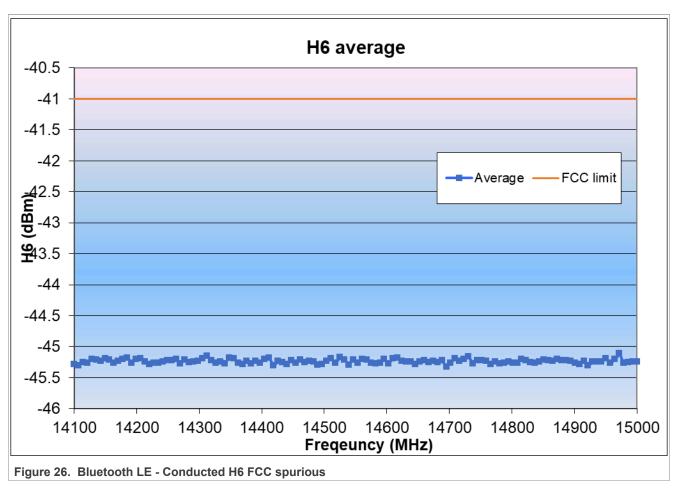
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 11.7 GHz to 12.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 12.081 GHz: -54.59 dBm.

Conclusion:


• There is more than 13 dB margin for Bluetooth LE to the FCC limit.

3.3.1.6.15 H6 (FCC test conditions, average measurements)

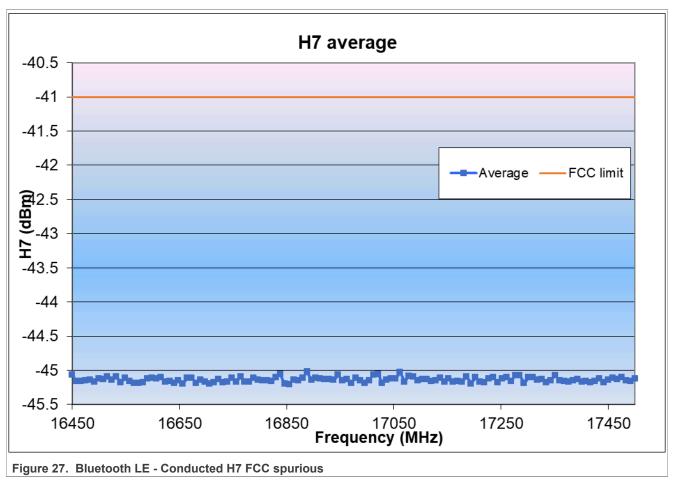
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 14.1 GHz to 15 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 14.972 GHz: -45.11 dBm.

Conclusion:


• There is more than 4 dB margin to the FCC limit.

3.3.1.6.16 H7 (FCC test conditions, average measurements)

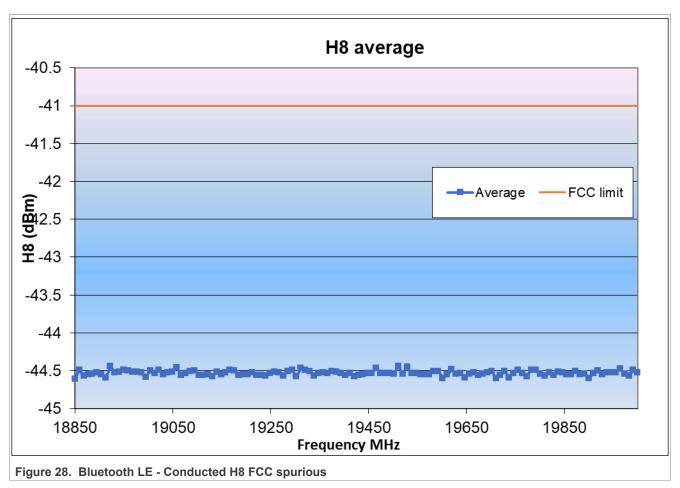
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 16.888 GHz: -45.02 dBm.

Conclusion:


• There is more than 4 dB margin to the FCC limit.

3.3.1.6.17 H8 (FCC test conditions, average measurements)

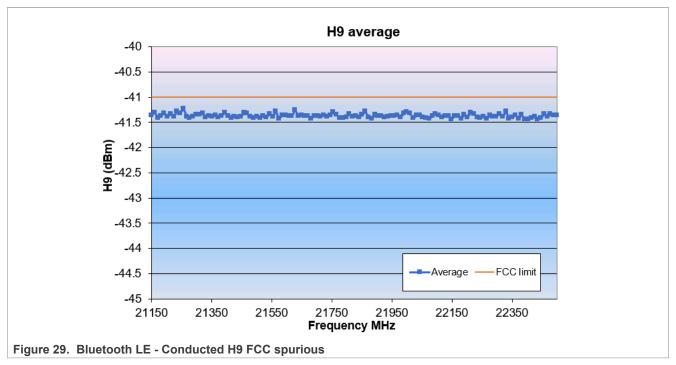
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 16.45 GHz to 17.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 19.511 GHz: -44.44 dBm.

Conclusion:


• There is more than 3 dB margin to the FCC limit.

3.3.1.6.18 H9 (FCC test conditions, average measurements)

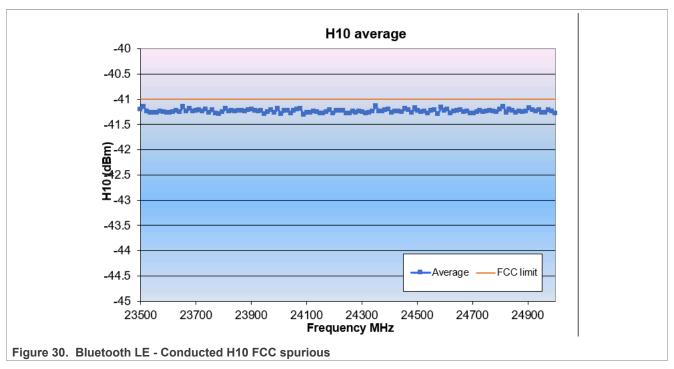
Test method:

The same method as for H2, except that the spectrum analyzer frequency span is set from 21.15 GHz to 22.5 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 21.256 GHz: -41.22 dBm.

Conclusion:


• There is no margin (~0.2 dB) to the FCC limit.

3.3.1.6.19 H10 (FCC test conditions, average measurements)

Test method:

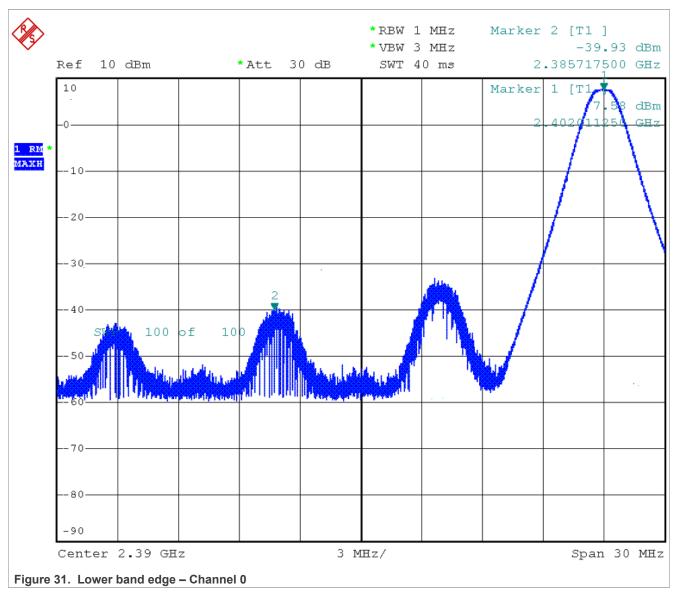
The same method as for H2, except that the spectrum analyzer frequency span is set from 23.35 GHz to 25 GHz.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Maximum power is at frequency 24.350 GHz: -41.13 dBm.

Conclusion:

• There is no margin (~0.1 dB) to the FCC limit.


3.3.1.7 Lower band edge - MIIT China

Test method:

- · Set the radio to:
 - TX mode
 - Modulated
 - Burst mode
 - Set the channel 0 (2.402 GHz)
- Set the analyzer to:
 - Start freq = 2.375 GHz
 - Stop freq = 2.405 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - Sweep point: 8001 pts
 - RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector = RMS
 - MaxHold
- · Software settings:
 - PA_RAMP_SEL value must be set to 0x02h (2 µs)
 - Modification: XCVR_TX_DIG_PA_CTRL_PA_RAMP_SEL(2) in the nxp_xcvr_common_config.c file

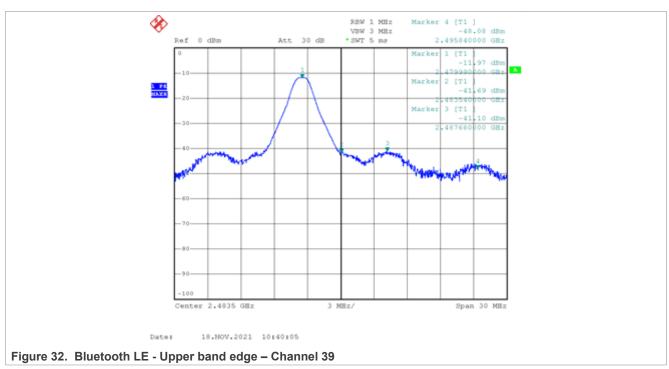
Bluetooth LE result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- The lower band edge test passes the Bluetooth SIG (MIIT-China) certification.
- There is no margin to the Bluetooth SIG (MIIT-China) limit (-40 dBm below 2.39 GHz).

3.3.1.8 Upper band edge - MIIT China


Test method:

- · Set the radio to:
 - TX mode
 - Modulated
 - Burst mode
 - Set the channel 39 (2.48 GHz)
 - Set the power to 3 (-12 dBm) for Bluetooth LE
- Set the analyzer to:
 - Start freq = 2.477 GHz

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

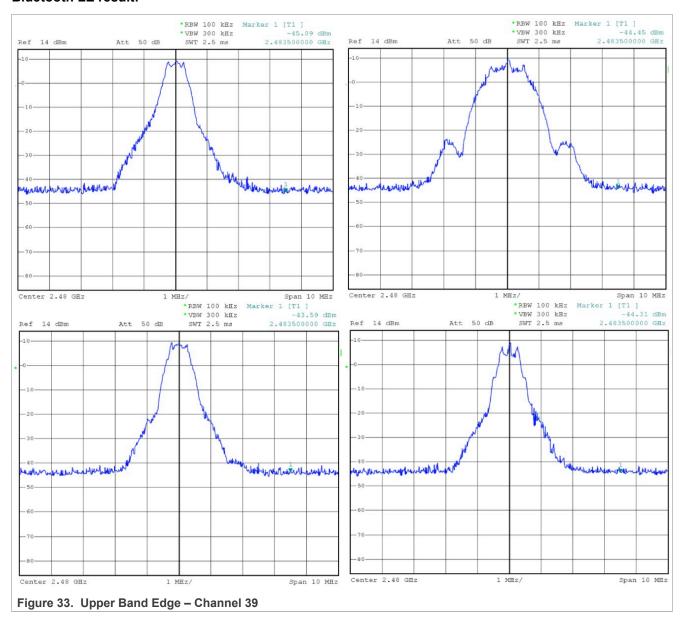
- Stop freq = 2.507 GHz
- Ref amp = -20 dBm
- Sweep time = 40 ms
- Sweep point: 8001 pts
- RBW = 1 MHz
- Video BW = 3 MHz
- Detector = RMS
- MaxHold
- Software settings:
 - PA_RAMP_SEL value must be set to 0x03h (4 µs)
 - Modification: XCVR_TX_DIG_PA_CTRL_PA_RAMP_SEL(2) in the nxp_xcvr_common_config.c file

Bluetooth LE result:

Conclusion:

- The upper band edge test passes the Bluetooth SIG (MIIT-China) certification.
- There is no margin to the Bluetooth SIG (MIIT-China) limit (-40 dBm higher than 2.4835 GHz).

3.3.1.9 Upper band edge (FCC ANSI C63.10, 558074 D01 DTS)


Test method:

- · Set the radio to:
 - TX mode
 - Modulated (1 Msps, 2 Msps, 500 ksps, 125 ksps)
 - Continuous mode
 - Maximum RF output power +10 dBm
- · Set the analyzer to:
 - Start freq = 2.475 GHz

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Stop freq = 2.485 GHz
- Ref amp = -20 dBm
- Sweep time = 100 ms
- RBW = 100 kHz
- Video BW = 300 kHz
- Detector = Average
- Average mode: Power
- Number of Sweeps = 100
- Set the channel 39 (2.48 GHz)
- Trace mode: Max hold

Bluetooth LE result:

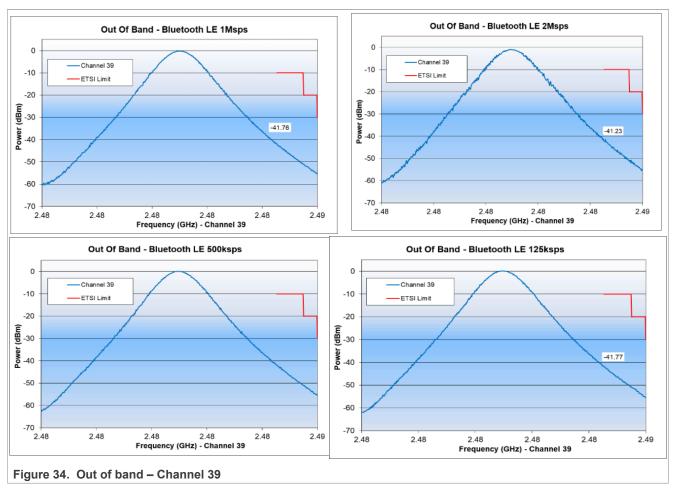
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Modulation	1 Msps	2 Msps	500 ksps	125 ksps
Level @2.4835 GHz	-45.09 dBm	-44.45 dBm	-43.59 dBm	-44.31 dBm

FCC limit: -41.15 dBm

Conclusion:

- The upper band edge test passes the FCC certification (< 41.15 dBm@2.4835 GHz).
- There is a minimum of 2 dB margin.


3.3.1.10 Out of band (ETSI 300 328 chapter 5.4.8.2.1)

Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- · Set the analyzer to:
 - Start freq = 2.475 GHz
 - Stop freq = 2.485 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector = RMS
 - Average mode: Power
 - Number of Sweeps = 100
 - Set the channel 39 (2.48 GHz)
 - Trace mode: Max hold

Bluetooth LE result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- The upper band edge test passes the FCC certification (< 41.15 dBm@2.4835 GHz).
- There is no margin by setting the RF output power to +0 dBm to the FCC limit.
- Decrease the RF output level to the channel 0 to fix your margin.

3.3.1.11 Out of band (ARIB STD T-66)

Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- · Set the analyzer to:
 - Start freq = 2.475 GHz
 - Stop freq = 2.485 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector = RMS

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Average mode: PowerNumber of Sweeps = 100
- Set the channel 39 (2.48 GHz), Trace mode: Max hold

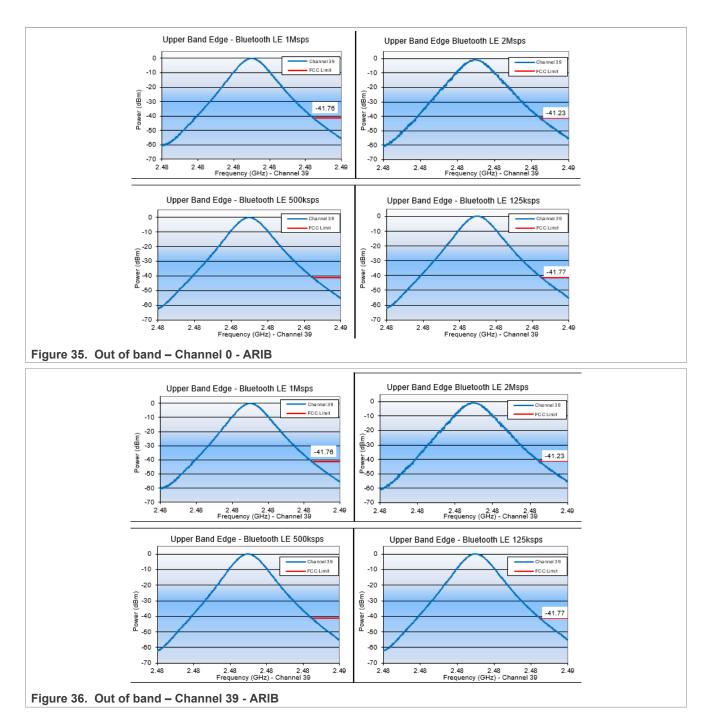
Summary results:

Table 16. Result for Channel 0

Frequen	requency band 2402 MHz (Ch0)		_ Limit			
Data	rate	1 Mbps	2 Mbps LR S2 LR S8		Lillit	
	Band I					-36 dBm/100 kHz
	(dBm/100 kHz)					(0.25 uW/100 kHz)
	Band II					-26 dBm/MHz
l la aveca a ata al	(dBm/MHz)					(2.5 uW/MHz)
Unexpected Emission	Band III					-16 dBm/MHz
Intensity	(dBm/MHz)					(25 uW/MHz)
	Band IV					-16 dBm/MHz
	(dBm/MHz)					(25 uW/MHz)
	Band V					-26 dBm/MHz
((dBm/MHz)					(2.5 uW/MHz)

Table 17. Result for Channel 39

Frequen	cy band	2480 MHz (Ch39)			Limit		
Data	rate	1 Mbps	2 Mbps	s LR S2 LR S8		LIIIIL	
	Band I					-36 dBm/100kHz	
	(dBm/100 kHz)					(0.25 uW/100kHz)	
	Band II					-26 dBm/MHz	
I lin aven a ata al	(dBm/MHz)					(2.5 uW/MHz)	
Unexpected Emission	Band III					-16 dBm/MHz	
Intensity	(dBm/MHz)					(25 uW/MHz)	
	Band IV					-16 dBm/MHz	
	(dBm/MHz)					(25 uW/MHz)	
	Band V					-26 dBm/MHz	
	(dBm/MHz)					(2.5 uW/MHz)	


Band I: 30 MHz – 1000 MHz
Band II: 1000 MHz – 2387 MHz
Band III: 2387 MHz – 2400 MHz

Band IV: 2483.5 MHz – 2496.5 MHz
 Band V: 2496.5 MHz – 12500 MHz

Detailed results:

728 All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- The out of band test passes the ARIB STD T-66 certification.
- There is no margin by setting the RF output power to +0 dBm to the FCC limit.

3.3.1.12 Maximum TX output power

A CMW equipment is used to measure the PER at the maximum TX output power.

Flashed software: A specific binary is flashed: hci bb.bin (available in the Bluetooth application examples).

Test method:

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Generator for the desired signal: CMW R&S
Criterion: PER < 30.8 % with 1500 packets

• Channels under test: 0, 19, and 39

Result:

Table 18. Bluetooth LE 1 Msps

TP/TRM-LE/CA/BV-01-C [Output power at 1 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status				
FP/TRM-LE/CA/BV-01-C [Output power at 1 Ms/s] @ Payload length: 37, Statistic Count: 1									
Channel 0									
Average Power	-20.0	20.0	10.72	dBm	Passed				
Peak Power	_	13.72	11.13	dBm	Passed				
Channel 19									
Average Power	-20.0	20.0	10.58	dBm	Passed				
Peak Power	_	13.58	11.01	dBm	Passed				
Channel 39									
Average Power	-20.0	20.0	10.35	dBm	Passed				
Peak Power	_	13.35	10.77	dBm	Passed				

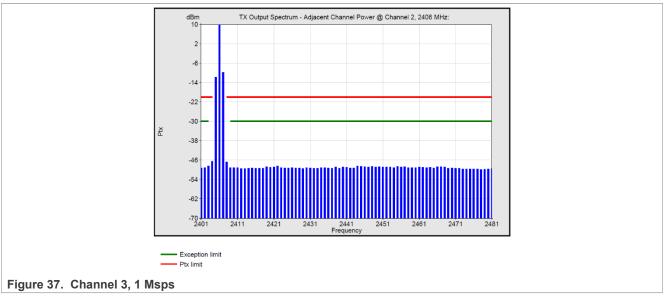
Conclusion:

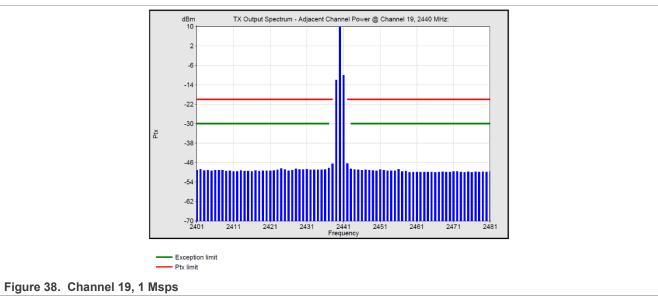
In line with the expected results.

3.3.1.13 Bluetooth LE TX output spectrum

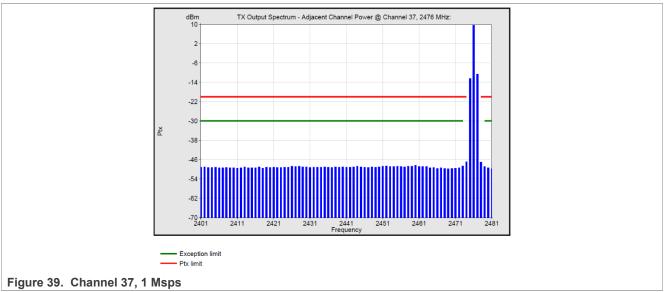
A CMW equipment is used to measure the adjacent channel power.

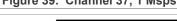
Flashed software: A specific binary is flashed: hci bb.bin (available in the Bluetooth application examples)


Test method:


Generator for the desired signal: CMW R&S
Criterion: PER < 30.8 % with 1500 packets

• Channels under test: 3, 19 and 37


Result:


K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

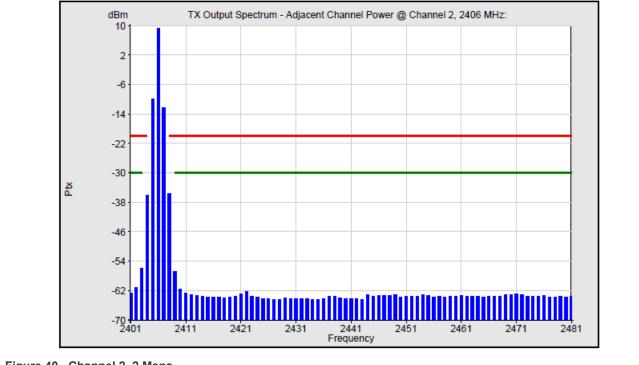
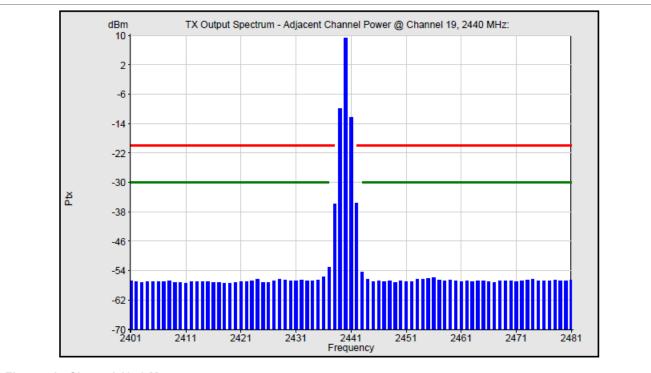
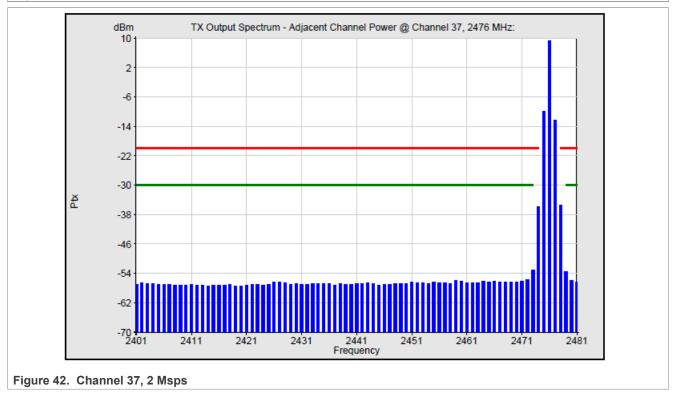




Figure 40. Channel 2, 2 Msps

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

3.3.1.14 Modulation characteristics

A CMW equipment is used to measure the frequency deviation df1 and df2.

Flashed software: A specific binary is flashed: hci_bb.bin (available in the Bluetooth application examples).

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Test method:

Generator for the desired signal: CMW R&S
Criterion: PER < 30.8 % with 1500 packets

• Channels under test: 0, 19, and 39

Result:

Table 19. Modulation characteristics at 1 Msps

TP/TRM-LE/CA/BV-05-C [Modulation Characteristics at 1 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status				
TP/TRM-LE/CA/BV-05-C [Modulation Characteristics at 1 Ms/s] @ Payload length: 37, Statistic Count: 10									
Channel 0									
Frequency Deviation df1 Average	225	275	250.10	kHz	Passed				
Frequency Deviation df2 99.9 %	185	_	204.84	kHz	Passed				
Frequency Deviation df2 Average/df1 Average	0.80	_	0.84	_	Passed				
Channel 19									
Frequency Deviation df1 Average	225	275	256.61	kHz	Passed				
Frequency Deviation df2 99.9 %	185	_	209.14	kHz	Passed				
Frequency Deviation df2 Average/df1 Average	0.80	_	0.84	_	Passed				
Channel 39									
Frequency Deviation df1 Average	225	275	250.52	kHz	Passed				
Frequency Deviation df2 99.9 %	185	_	210.94	kHz	Passed				
Frequency Deviation df2 Average/df1 Average	0.80	_	0.86	_	Passed				

Table 20. Modulation characteristics at 2 Msps

TP/TRM-LE/CA/BV-05-C [Modulation Characteristics at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status					
TP/TRM-LE/CA/BV-10-C [Modulation Characteristics at 2 Ms/s] @ Payload length: 37, Statistic Count: 10										
Channel 0										
tblContinuation_7_1										
Frequency Deviation df1 Average	450	550	506.34	kHz	Passed					
tblContinuation_7_2										
Frequency Deviation df2 99.9 %	370	_	400.70	kHz	Passed					
Frequency Deviation df2 Average/df1 Average	0.80	_	0.81	_	Passed					
Channel 19										
tblContinuation_7_3	'									
Frequency Deviation df1 Average	450	550	500.85	kHz	Passed					
tblContinuation_7_4										

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 20. Modulation characteristics at 2 Msps...continued

TP/TRM-LE/CA/BV-05-C [Modulation Characteristics at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status				
TP/TRM-LE/CA/BV-10-C [Modulation Characteristics at 2 Ms/s] @ Payload length: 37, Statistic Count: 10									
Frequency Deviation df2 99.9 %	370	_	402.89	kHz	Passed				
Frequency Deviation df2 Average/df1 Average	0.80	_	0.83	_	Passed				
Channel 39									
tblContinuation_7_5				1					
Frequency Deviation df1 Average	450	550	505.42	kHz	Passed				
tblContinuation_7_6									
Frequency Deviation df2 99.9 %	370	_	402.30	kHz	Passed				
Frequency Deviation df2 Average/df1 Average	0.80	_	0.82	_	Passed				

Table 21. Modulation characteristics at LE coded (S8)

TP/TRM-LE/CA/BV-13-C [Modulation Characteristics, LE Coded (S = 8)]	Lower limit	Upper limit	Measured	Unit	Status					
TP/TRM-LE/CA/BV-13-C [Modulation Characteristics, LE Coded (S = 8)] @ Payload length: 37, Statistic Count: 10										
Channel 0										
tblContinuation_9_1										
Frequency Deviation df1 Average	225	275	252.43	kHz	Passed					
tblContinuation_9_2				I						
Frequency Deviation df1 99.9 %	185	_	242.22	kHz	Passed					
Channel 19										
tblContinuation_9_3				I						
Frequency Deviation df1 Average	225	275	250.74	kHz	Passed					
Frequency Deviation df1 99.9 %	185	_	241.82	kHz	Passed					
Channel 39										
tblContinuation_9_4										
Frequency Deviation df1 Average	225	275	251.84	kHz	Passed					
Frequency Deviation df1 99.9 %	185	_	241.22	kHz	Passed					

Conclusion:

Good margins, in line with the expected results.

3.3.1.15 Carrier frequency offset and drift

A CMW equipment is used to measure the frequency deviation df1 and df2.

Flashed software: A specific binary is flashed: hci bb.bin (available in the Bluetooth application examples).

Test method:

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Generator for the desired signal: CMW R&S
Criterion: PER < 30.8 % with 1500 packets

• Channels under test: 0, 19, and 39

Result:

Table 22. Carrier frequency offset and drift at 1 Msps

TP/TRM-LE/CA/BV-06-C [Carrier frequency offset and drift at 1 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status				
TP/TRM-LE/CA/BV-06-C [Carrier frequency offset and drift at 1 Ms/s] @ Payload length: 37, Statistic Count: 10									
Channel 0									
Frequency Accuracy	-150.00	150.00	7.31	kHz	Passed				
Frequency Drift	-50.00	50.00	3.32	kHz	Passed				
Maximum Drift Rate	-20.00	20.00	1.43	kHz/50 µs	Passed				
Frequency Offset	-150.00	150.00	8.82	kHz	Passed				
Initial Frequency Drift	-23.00	23.00	2.20	kHz	Passed				
Channel 19									
Frequency Accuracy	-150.00	150.00	8.22	kHz	Passed				
Frequency Drift	-50.00	50.00	1.96	kHz	Passed				
Maximum Drift Rate	-20.00	20.00	1.44	kHz/50 µs	Passed				
Channel 39									
Frequency Accuracy	-150.00	150.00	7.87	kHz	Passed				
Frequency Drift	-50.00	50.00	2.06	kHz	Passed				
Maximum Drift Rate	-20.00	20.00	1.47	kHz/50 µs	Passed				
Frequency Offset	-150.00	150.00	9.19	kHz	Passed				
Initial Frequency Drift	-23.00	23.00	1.70	kHz	Passed				

Table 23. Carrier frequency offset and drift at 2 Msps

TP/TRM-LE/CA/BV-12-C [Carrier frequency offset and drift at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status
TP/TRM-LE/CA/BV-12-C [Carrier frequence	y offset and drift	at 2 Ms/s] @ Pay	load length: 37,	Statistic (Count: 10
Channel 0					
tblContinuation_8_1					
Frequency Accuracy	-150.00	150.00	-24.33	kHz	Passed
Frequency Drift	-50.00	50.00	-4.54	kHz	Passed
Maximum Drift Rate	-20.00	20.00	-2.25	kHz/50 µs	Passed
Frequency Offset	-150.00	150.00	-27.50	kHz	Passed
Initial Frequency Drift	-23.00	23.00	-2.49	kHz	Passed

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 23. Carrier frequency offset and drift at 2 Msps...continued

TP/TRM-LE/CA/BV-12-C [Carrier frequency offset and drift at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status				
TP/TRM-LE/CA/BV-12-C [Carrier frequency offset and drift at 2 Ms/s] @ Payload length: 37, Statistic Count: 10									
Channel 19									
tblContinuation_8_2									
Frequency Accuracy	-150.00	150.00	-24.48	kHz	Passed				
Frequency Drift	-50.00	50.00	-5.12	kHz	Passed				
Maximum Drift Rate	-20.00	20.00	-2.69	kHz/50 µs	Passed				
Frequency Offset	-150.00	150.00	-27.86	kHz	Passed				
Initial Frequency Drift	-23.00	23.00	-2.69	kHz	Passed				
Channel 39									
tblContinuation_8_3				,					
Frequency Accuracy	-150.00	150.00	-24.91	kHz	Passed				
Frequency Drift	-50.00	50.00	-5.47	kHz	Passed				
Maximum Drift Rate	-20.00	20.00	-1.91	kHz/50 µs	Passed				
Frequency Offset	-150.00	150.00	-28.63	kHz	Passed				
Initial Frequency Drift	-23.00	23.00	-2.73	kHz	Passed				

Table 24. Carrier frequency offset and drift at LR (S=8)

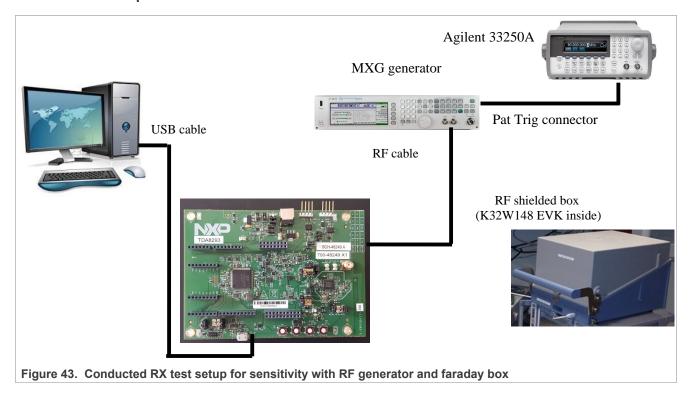
TP/TRM-LE/CA/BV-14-C [Carrier frequency offset and drift, LE Coded (S = 8)]	Lower limit	Upper limit	Measured	Unit	Status				
TP/TRM-LE/CA/BV-14-C [Carrier frequency offset and drift, LE Coded (S = 8)] @ Payload length: 37, Statistic Count: 10									
tblContinuation_10_1									
Channel 0									
tblContinuation_10_2									
Frequency Accuracy	-150.00	150.00	-25.51	kHz	Passed				
Frequency Drift	-50.00	50.00	-2.66	kHz	Passed				
Maximum Drift Rate	-19.20	19.20	-2.59	kHz/50 µs	Passed				
Frequency Offset	-150.00	150.00	-26.71	kHz	Passed				
Channel 19									
tblContinuation_10_3									
Frequency Accuracy	-150.00	150.00	-25.92	kHz	Passed				
Frequency Drift	-50.00	50.00	-3.04	kHz	Passed				
Maximum Drift Rate	-19.20	19.20	-2.71	kHz/50 µs	Passed				

AN13728

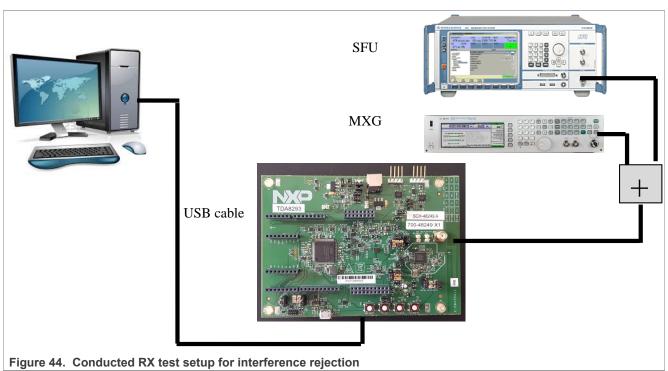
All information provided in this document is subject to legal disclaimers.

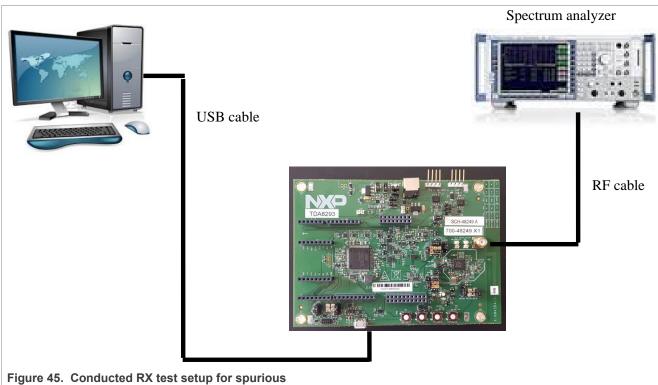
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 24. Carrier frequency offset and drift at LR (S=8)...continued

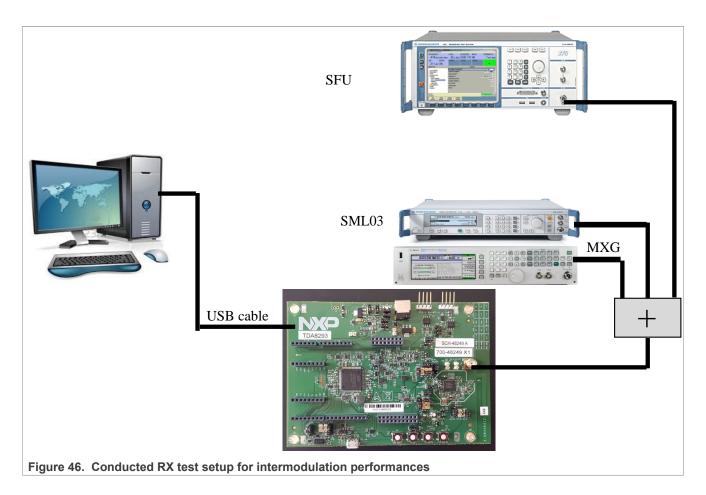

TP/TRM-LE/CA/BV-14-C [Carrier frequency offset and drift, LE Coded (S = 8)]	Lower limit	Upper limit	Measured	Unit	Status
TP/TRM-LE/CA/BV-14-C [Carrier frequence Count: 10	cy offset and drift	, LE Coded (S = 8	3)] @ Payload ler	ngth: 37, S	Statistic
Frequency Offset	-150.00	150.00	-27.24	kHz	Passed
Channel 39					
tblContinuation_10_4					
Frequency Accuracy	-150.00	150.00	-26.35	kHz	Passed
Frequency Drift	-50.00	50.00	-3.00	kHz	Passed
Maximum Drift Rate	-19.20	19.20	-3.00	kHz/50 µs	Passed
Frequency Offset	-150.00	150.00	-27.66	kHz	Passed

Conclusion:


Good margins, in line with the expected results.


3.3.2 RX tests

3.3.2.1 Test set up - Bluetooth LE



K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

3.3.2.2 Sensitivity

3.3.2.2.1 With the ARB generator

Flashed software: Connectivity test

Test method:

• To remain immune to the external parasitic signals, put the K32W148 EVK into an RF shielded box.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

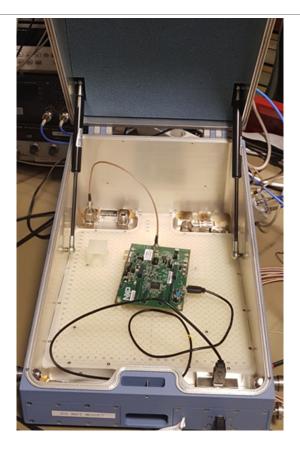
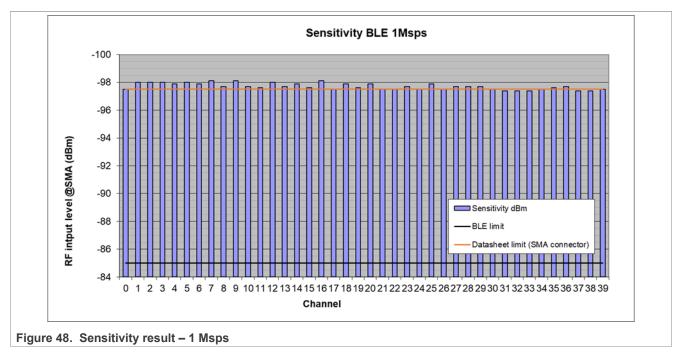
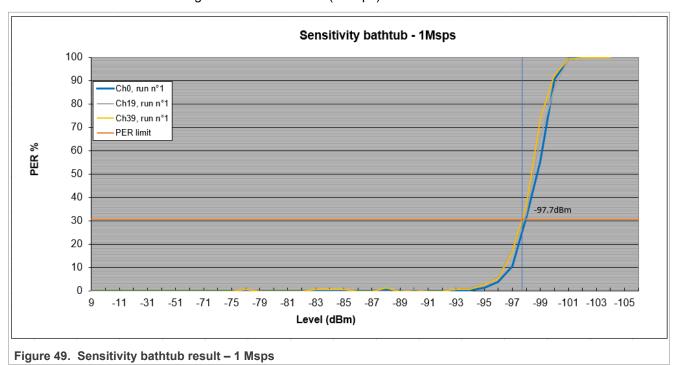


Figure 47. Sensitivity test

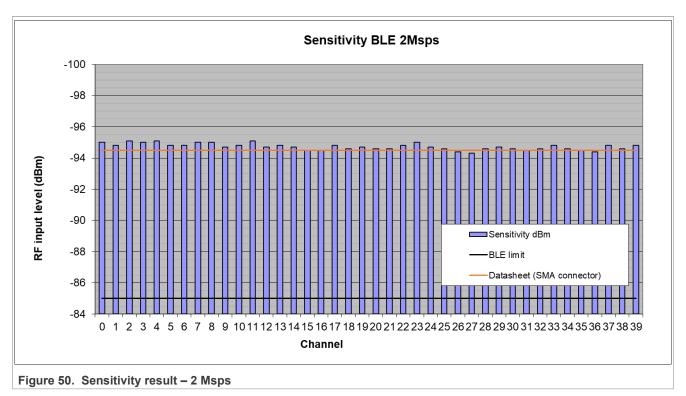

Bluetooth LE:

The generator (Agilent NX5181 MXG) is used in the ARB mode to generate a pattern of 1500 packets. The TERATERM window is used to control the module.

- Four modes are checked: 1 Msps, 2 Msps, LR (S=2), and LR (S=8).
- Set it to channel 0.
- The connection is automatically established and the Packet Error Rate (PER) is measured.
- Decrease the level of the SFU at the RF input of the module until PER = 30.8 %.
- · Repeat it up to channel 39.

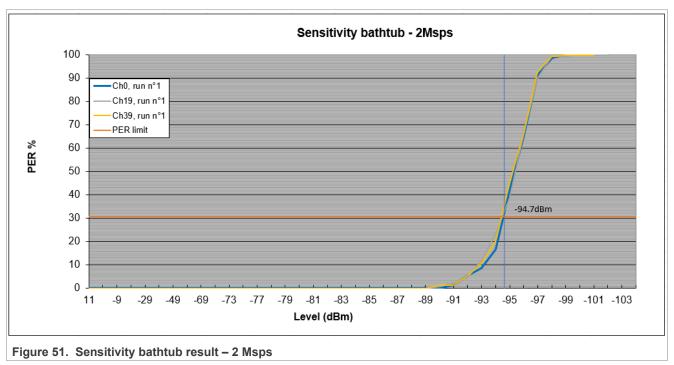

Bluetooth LE results (@SMA connector):

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

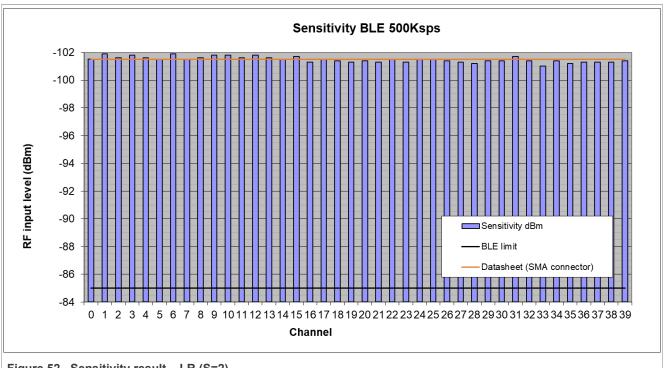


- The best sensitivity is on channel 9: -98.1 dBm
- The lowest sensitivity is on channel 31: -97.4 dBm
- Delta over channels: 0.7 dB

K32W148 EVK shows an average value of -97.7 dBm (1 Msps) at SMA connector.

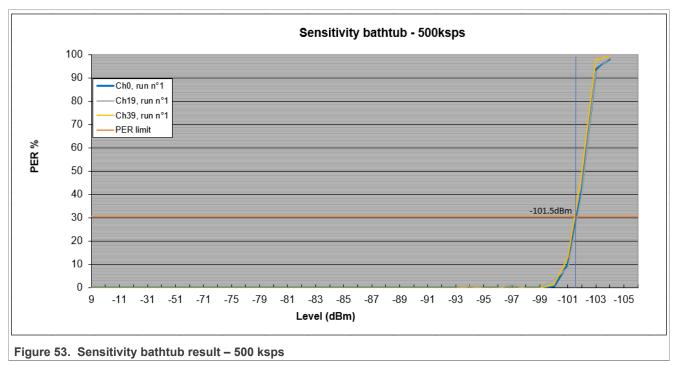


K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

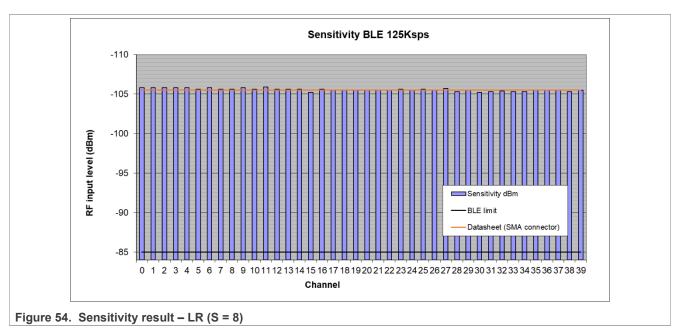


- The best sensitivity is on channel 39: -95.9 dBm
- The lowest sensitivity is on channel 27: -95.2 dBm
- Delta over channels: 0.7 dB

K32W148 EVK shows an average value of -94.7 dBm (2 Msps) at SMA connector.

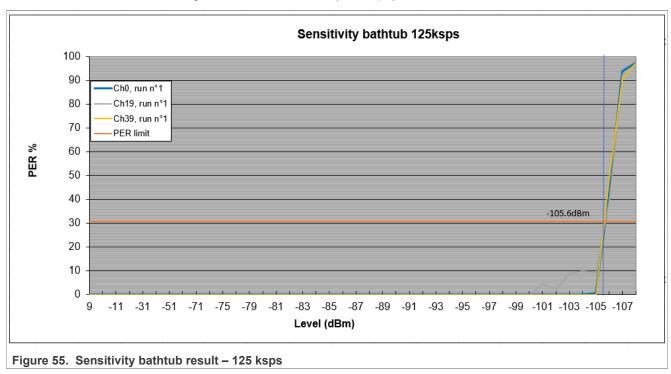


K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications



- Figure 52. Sensitivity result LR (S=2)
- The best sensitivity is on channel 31: -101.9 dBm
- The lowest sensitivity is on channel 13: -101.0 dBm
- Delta over channels: 0.9 dB

K32W148 EVK shows an average value of -101.5 dBm (500 ksps) at SMA connector.



K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- The best sensitivity is on channel 11: -105.9 dBm
- The lowest sensitivity is on channel 28: -105.2 dBm
- Delta over channels: 0.7 dB

K32W148 EVK shows an average value of -105.6 dBm (125 ksps) at SMA connector.

Conclusion:

K32W148 EVK withstands an average sensitivity level of:

- -97.7 dBm @1 Msps (Data sheet typical value: -97.65 dBm at the SMA connector)
- -94.7 dBm @2 Msps (Data sheet typical value: -94.65 dBm at the SMA connector)

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- -101.5 dBm @LRS2 (Data sheet typical value: -101.65 dBm at the SMA connector)
- -105.6 dBm @LRS8 (Data sheet typical value: -105.65 dBm at the SMA connector)

Note: To get the value at RF pin output (data sheet value), add 0.35 dB loss to the sensitivity results.

3.3.2.3 Receiver maximum input level

3.3.2.3.1 Bluetooth LE

Flashed software: HCI_BB

Test method:

- The same test setup as with the sensitivity test is used.
- The signal level is increased up to the PER = 30.8 % with 1500 packets.

Results:

Table 25. Maximum input power - 1 Msps

TP/RCV-LE/CA/BV-06-C [Maximum input signal level at 1 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status
TP/RCV-LE/CA/BV-06-C [Maximum input Level: 0 dBm	signal level at 1 N	Ms/s] @ Payload	length: 37, No. of	f Packets:	1500, RF
Channel 0					
tblContinuation_7_1					
PER	-	30.8	16.66667	%	Passed
Correct Packets	_	_	1250		Passed
Channel 19					
tblContinuation_7_2				1	
PER	-	30.8	16.53333	%	Passed
Correct Packets	-	_	1252		Passed
Channel 39					
tblContinuation_7_3					
PER	-	30.8	14.73333	%	Passed
Correct Packets	-	-	1279		Passed

Table 26. Maximum input power - 2 Msps

TP/RCV-LE/CA/BV-12-C [Maximum input signal level at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status
TP/RCV-LE/CA/BV-12-C [Maximum input Level: 0 dBm	signal level at 2 N	Ms/s] @ Payload	length: 37, No. of	f Packets:	1500, RF
Channel 0					
tblContinuation_13_1					
PER	_	30.8	12.80000	%	Passed
Correct Packets	_	_	1308		Passed

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

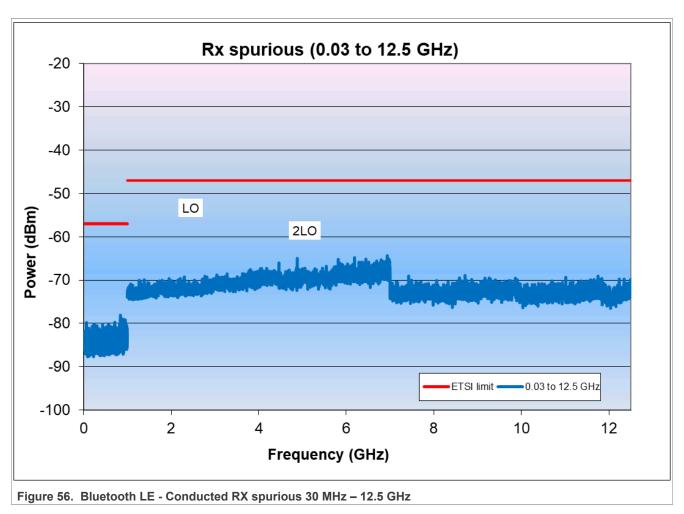
Table 26. Maximum input power - 2 Msps...continued

TP/RCV-LE/CA/BV-12-C [Maximum input signal level at 2 Ms/s]	Lower limit	Upper limit	Measured	Unit	Status
TP/RCV-LE/CA/BV-12-C [Maximum input Level: 0 dBm	signal level at 2 l	Ms/s] @ Payload	length: 37, No. of	f Packets:	1500, RF
Channel 19					
tblContinuation_13_2					
PER	_	30.8	10.53333	%	Passed
Correct Packets	_	_	1342		Passed
Channel 39					
tblContinuation_13_3					
PER	_	30.8	12.86667	%	Passed
Correct Packets	_	_	1307		Passed

Conclusion:

The results are limited by the maximum output power of the equipment.

3.3.2.4 RX spurious


Flashed software: Connectivity test

Test method:

- · Set the radio to:
 - Receiver mode, frequency: channel 18
- Set the analyzer to:
 - Ref amp = 20 dBm, Trace = max hold, detector = max peak
- Set Start/stop frequency: 30 MHz/1 GHz
 - RBW = 100 kHz, VBW = 300 kHz
- Then set the start/stop frequency: 1 GHz/30 GHz
 - RBW = 1 MHz, VBW = 3 MHz

Bluetooth LE results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- There are no spurs above the spectrum analyzer noise floor, except for 2xLO.
- More than -18 dB margin

3.3.2.5 Interferer results in Bluetooth

3.3.2.5.1 Receiver interference rejection performances

3.3.2.5.1.1 Adjacent, Alternate, and Co-channel rejection – Bluetooth LE @1 Msps, @2 Msps, @500 ksps (LR S=2), @125 ksps (LR S=8)

The interferers are at the adjacent channel (+/-1 MHz, +/-2 MHz, +/-3 MHz) or co-channel.

The test is performed with only one interfering unmodulated signal at a time.

Test method:

- · Generator for the desired signal: Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm; the interferer is increased until the PER threshold is reached

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Channels under test: 2, 19, and 37

Bluetooth LE @ 1 Msps:

Results

	ch2				ch19				ch37				
		24	406			2	440				2	2478	
	N-2MHz	N-1MHz	N+1MHz	N+2MHz	N-2M	z N-1MHz	N+1MHz	N+2MHz		N-2MHz	N-1MHz	N+1MHz	N+2
	2402	2404	2408	2410	2436	2438	2442	2444		2472	2474	2478	24
Interferer level (dBm)	-18.6	-62.1	-63.1	-17.1	-19.1	-63.1	-63.1	-17.1		-20.1	-62.1	-63.1	-17
Interferer level (C/I dB)	-48.4	-4.9	-3.9	-49.9	-47.9	-3.9	-3.9	-49.9		-46.9	-4.9	-3.9	- 49
BLE 5.x fmit (C/I dB)	-17	15	15	-17	-17	15	15	-17		-17	15	15	-1
Margin (dB)	31.4	19.9	18.9	32.9	30.9	18.9	18.9	32.9		29.9	19.9	18.9	32
			_	Co-channe	el		_	Co-channe	4				Co-ch
		h2	1			ab 10	1		1	ab	27	1	
		h2]	ch2		ch19]	ch19	1		37 178		Co-ch ch
	24	h2 -08 N+3MHz]		el N-3Mi	2440]		!		37 178 N+3MHz		
		08		ch2 2408		2440		ch19 2440	4	24	78		ch 24
Interferer level (dBm)	N-3MHz	08 N+3MHz		2408 N	N-3MH	2440 z N+3MHz		2440 N	4	N-3MHz	78 N+3MHz		24 1 24 24
	24 N-3MHz 2400	08 N+3MHz 2412		2408 N 2408	N-3MI 2434	2440 z N+3MHz 2448		2440 N 2440	4	N-3MHz 2470	78 N+3MHz 2482		24 N 24 -70
Interferer level (dBm) Interferer level (C/I dB) BLE 5.x limit (C/I dB)	N-3MHz 2400 -10.1	08 N+3MHz 2412 -8.6		ch2 2408 N 2408 -70.1	N-3MF 2434 -9.6	2440 z N+3MHz 2446 -8.6		ch19 2440 N 2440 -70.1	4	24 N-3MHz 2470 -9.8	78 N+3MHz 2482 -8.6		24 N

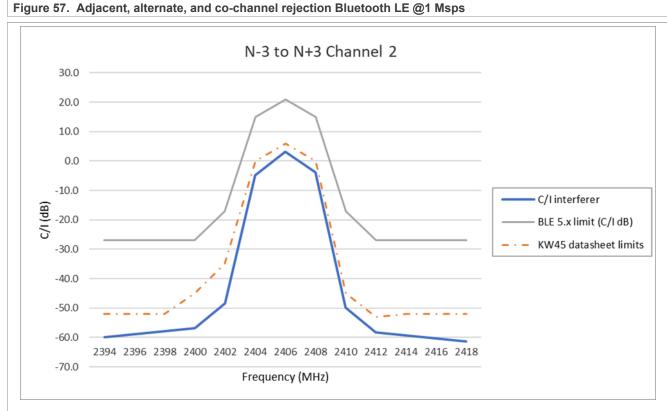


Figure 58. Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Msps channel 2

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

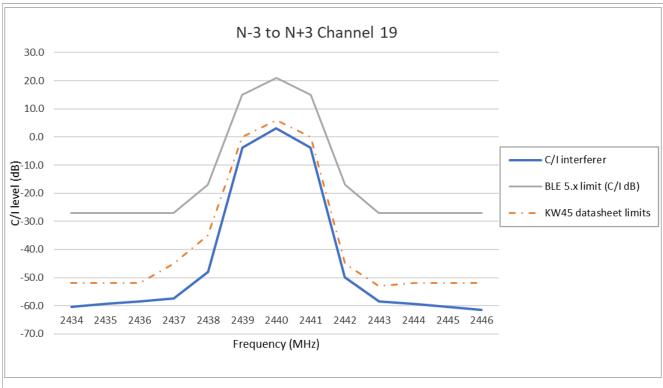
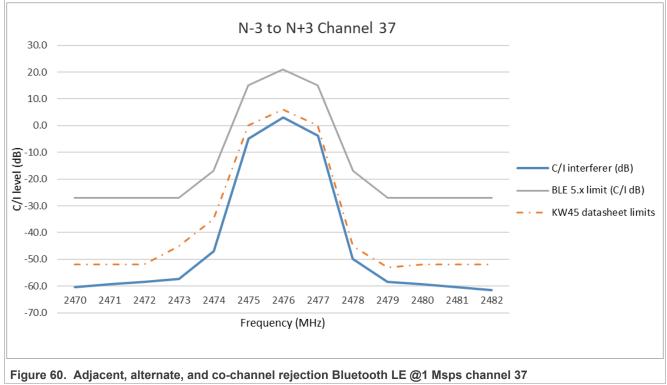



Figure 59. Adjacent, alternate, and co-channel rejection Bluetooth LE @1 Msps channel 19

Conclusion
 Good margin, in line with the expected results.

Bluetooth LE @ 2 Msps:

AN13728 All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Results

			ch2	
		2	2406	
	N-4MHz	N-2MHz	N+2MHz	N+4MHz
	2398	2402	2410	2414
Interferer level (dBm)	-32.1	-57.6	-55.6	-22.1
Interferer level (C/I dB)	-34.9	-9.4	-11.4	- 44.9
BLE 5.x limit (C/I dB)	-17	15	15	-17
Margin (dB)	17.9	24.4	26.4	27.9
	d	h2]	Co-channel ch2
	c	108		ch2 2408
	24 N-6MHz	N+6MHz		ch2 2408 N
	c	108		ch2 2408
Interferer level (dBm)	24 N-6MHz	N+6MHz		ch2 2408 N
	0 24 N-6MHz 2400	N+6MHz 2412		ch2 2408 N 2408
interferer level (dBm)	24 N-6MHz 2400 -11.1	N+6MHz 2412 -11.1		ch2 2408 N 2408 -70.1

Figure 61. Adjacent, alternate, and co-channel rejection Bluetooth LE @2 Msps

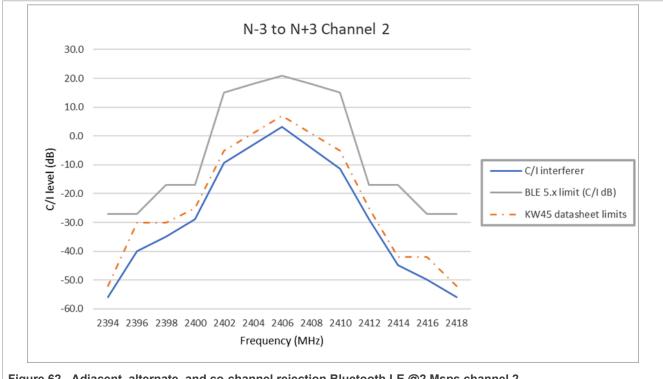


Figure 62. Adjacent, alternate, and co-channel rejection Bluetooth LE @2 Msps channel 2

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

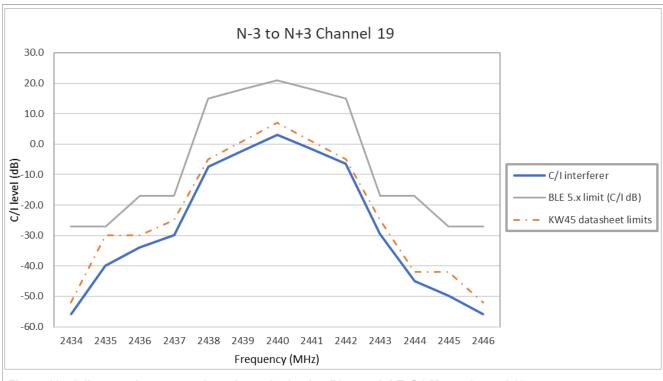
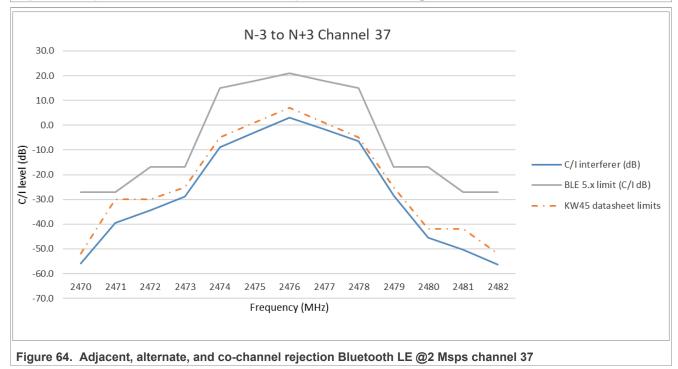



Figure 63. Adjacent, alternate, and co-channel rejection Bluetooth LE @2 Msps channel 19

Conclusion: Good margin, in line with the expected results.

Bluetooth LE @500 ksps (LR S = 2):

• Results:

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

			ch2					sh19					sh37	
	2406						2440					2476		
	N-2MHz	N-1MHz	N+1MHz	N+2MHz		N-2MHz	N-1MHz	N+1MHz	N+2MHz		N-2MHz	N-1MHz	N+1MHz	N+2MHz
	2402	2404	2408	2410		2436	2438	2442	2444		2472	2474	2478	2480
Interferer level (dBm)	-25.1	-55.1	-55.1	- 16.6		-25.6	-55.1	-55.1	-11.6		-26.1	-55.6	-55.6	-12.1
Interferer level (C/I dB)	-41.9	-11.9	-11.9	-50.4		-41.4	-11.9	-11.9	-55.4		-40.9	-11.4	-11.4	-54.9
BLE 5.x limit (C/I dB)	-17	15	15	- 17		-17	15	15	-17		-17	15	15	-17
Margin (dB)	24.9	26.9	26.9	33.4		24.4	26.9	26.9	38.4		23.9	26.4	26.4	37.9
		h2 108		ch2 2408			19 40		ch19 2440			1 37 178		ch37 2478
	N-3MHz	N+3MHz] [N		N-3MHz	N+3MHz	1	N		N-3MHz	N+3MHz	1	N
	2400	2412	1 1	2408		2434	2446		2440		2470	2482		2478
Interferer level (dBm)	-15.1	-4.6	1	-64.6		-12.1	-7.1	1	-64.6		-12.1	-7.6	1	-64.1
Interferer level (C/I dB)	-51.9	-62.4	1	-2.4		-54.9	-59.9		-2.4		-54.9	-59.4		-2.9
BLE 5.x limit (C/I dB)	-27	-27	l l	21		-27	-27		21		-27	-27]	21
Margin (dB)	24.9	35.4	l l	23.4		27.9	32.9		23.4		27.9	32.4		23.9
Figure 65. Adja	cent, al	ternate	, and c	o-chann	el rejec	tion BI	uetoot	h LE @	500 ksp	s (LR S	S = 2)			

Figure 66. Adjacent, alternate, and co-channel rejection Bluetooth LE @500 ksps (LR S = 2) channel 2

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

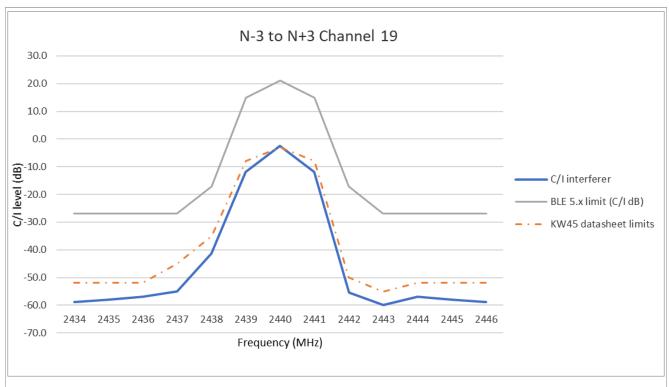
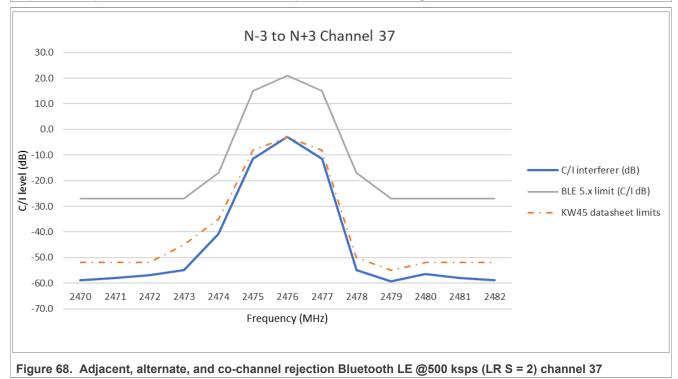



Figure 67. Adjacent, alternate, and co-channel rejection Bluetooth LE @500 ksps (LR S = 2) channel 19

Conclusion:

Good margin, in line with the expected results

Bluetooth LE @125 ksps (LR S = 8):

· Results:

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

			ch2				ch19				ch37	
			2408				2440				2476	
	N-2MHz	N-1MHz	N+1MHz	N+2MHz	N-2MHz	N-1MHz	N+1MHz	N+2MHz	N-2MHz	N-1MHz	N+1MHz	N+2N
	2402	2404	2408	2410	2438	2438	2442	2444	2472	2474	2478	248
Interferer level (dBm)	-27.1	-58.6	-58.6	-17.6	-28.1	-59.1	-58.6	-16.6	-29.6	-58.1	-58.6	-16
Interferer level (C/I dB)	-39.9	-8.4	-8.4	-49.4	-38.9	-7.9	-8.4	-50.4	-37.4	-8.9	-8.4	-50
BLE 5x limit (C/I dB)	-17	15	15	-17	-17	15	15	-17	-17	15	15	-17
Margin (dB)	22.9	23.4	23.4	32.4	21.9	22.9	23.4	33.4	20.4	23.9	23.4	33.
ivia gii i day				Co-channel				Co-channel				Co-ch
vide geri (day)	d	h2	[Co-channel ch2		h19] [ch19	ch] [ch3
was giri, see	d 24	h2 108		Co-channel ch2 2408		440		ch19 2440	24	76] [Co-cha ch3 247 N
vind gir (Gey	d 24	h2		Co-channel ch2		440		ch19				ch3 247 N
Interferer level (dBm)	24 N-3MHz	h2 08 N+3MHz		Co-channel ch2 2408 N	N-3MHz	440 N+3MHz		ch19 2440 N	N-3MHz	76 N+3MHz		ch3 247 N 247
	0 24 N-3MHz 2400	h2 08 N+3MHz 2412		Co-channel ch2 2408 N 2408	N-3MHz	N+3MHz 2448		ch19 2440 N 2440	24 N-3MHz 2470	78 N+3MHz 2482		ch3
Interferer level (dBm)	24 N-3MHz 2400 -12.8	h2 98 N+3MHz 2412 -11.1		Co-channel ch2 2408 N 2408 -85.1	N-3MHz 2434 -126	N+3MHz 2448 -9.1		ch19 2440 N 2440 -65.1	24 N-3MHz 2470 -12.6	76 N+3MHz 2482 -11.1		ch3 247 N 247 -65

Figure 69. Adjacent, alternate, and co-channel rejection Bluetooth LE @125 ksps (LR S = 8)

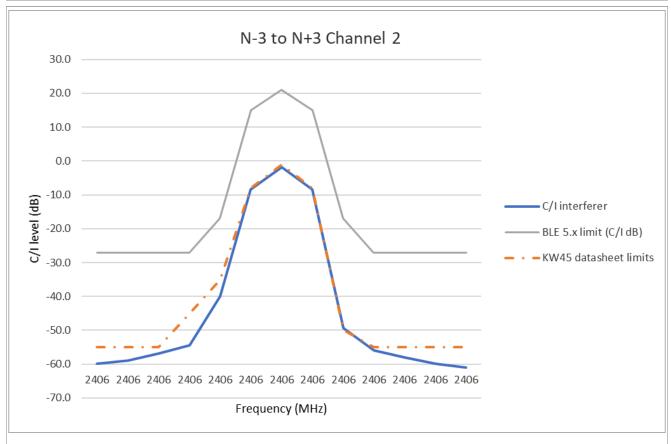


Figure 70. Adjacent, alternate, and co-channel rejection Bluetooth LE @125 ksps (LR S = 8) channel 2

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

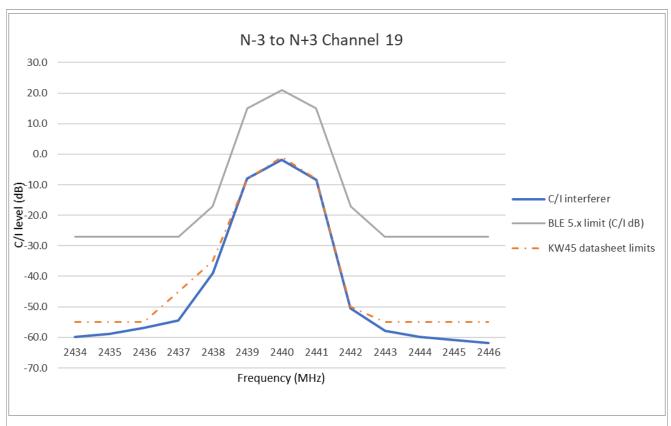
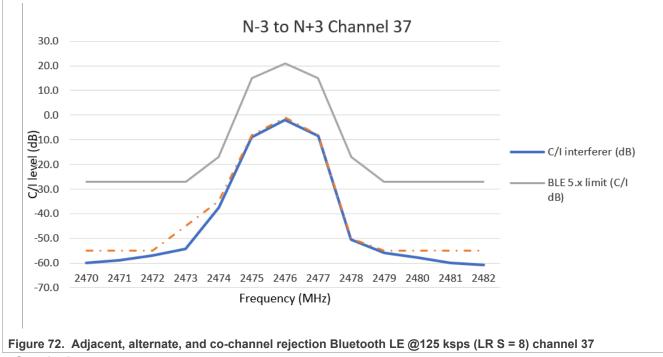



Figure 71. Adjacent, alternate, and co-channel rejection Bluetooth LE @125 ksps (LR S = 8) channel 19

· Conclusion:

Good margin, in line with the expected results

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

3.3.2.5.2 Receiver blocking

The blocking interferers are at the out-of-band channels depending on the receiver category.

3.3.2.5.2.1 Receiver category 1 - Bluetooth LE 1 Msps (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.2)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

• Generator for the desired signal (Bluetooth LE 1 Msps): Agilent N5182A

· Generator for interferers: R&S SFU

• Criterion: PER < 10 %

• The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.

· Channels under test: 0 and 39

Result:

		PT 195		30		
	ch0	ch0	ch39	ch39		
	2402	2402	2480	2480		
	Low	High	Low	High		
70	2380	2503.5	2380	2503.5		
Interferer level (dBm)	-16.1	-18.1	-17.1	-19.1		
300 328 limit (dBm)	-53	-53	-53	-53		
Margin (dB)	36.9	34.9	35.9	33.9		
	ch0	ch0	ch0	ch39	ch39	ch39
	2402	2402	2402	2480	2480	2480
	Low	Low	Low	Low	Low	Low
	2300	2330	2360	2300	2330	2360
Interferer level (dBm)	-16.1	-16.1	-16.6	-16.1	-16.1	-18.1
300 328 limit (dBm)	-47	-47	-47	-47	-47	-47
Marqin (dB)	30.9	30.9	30.4	30.9	30.9	28.9
	(A)	Carrier and the same of the sa		A CONTRACTOR OF STREET	-	A Language
	ch0	ch0	ch0	ch0	ch0	ch0
	2402	2402	2402	2402	2402	2402
	High	High	High	High	High	High
	2523.5	2553.5	2583.5	2613.5	2643.5	2673.5
Interferer level (dBm)	-16.6	-16.6	-17.1	-17.1	-16.9	-17.1
300 328 limit (dBm)	-47	-47	-47	-47	-47	-47
Margin (dB)	30.4	30.4	29.9	29.9	30.1	29.9
	ch39	ch39	ch39	ch39	ch39	ch39
	2480	2480	2480	2480	2480	2480
	High	High	High	High	High	High
	2523.5	2553.5	2583.5	2613.5	2643.5	2673.5
Interferer level (dBm)	-17.6	-17.6	-17.6	-17.6	-17.6	-17.6
300 328 limit (dBm)	-47	-47	-47	-47	-47	-47
Margin (dB)	29.4	29.4	29.4	29.4	29.4	29.4
Figure 73. Receive	r blocking (out	of band) rejectio	n - Bluetooth LE 1	Msps	- 	

Conclusion:

Good margin, in line with the expected results.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

3.3.2.5.2.2 Receiver category 2 - Bluetooth LE 1 Msps (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.3)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

• Generator for the desired signal (Bluetooth LE 1 Msps): Agilent N5182A

· Generator for interferers: R&S SFU

• Criterion: PER < 10 %

 The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.

· Channels under test: 0 and 39

Result:

	ch0	ch0	ch39	ch39
	2402	2402	2480	2480
	Low	High	Low	High
	2380	2503.5	2380	2503.
Interferer level (dBm)	-16.1	-18.1	-17.1	-19.1
300 328 limit (dBm)	-57	-57	-57	-57
Margin (dB)	40.9	38.9	39.9	37.9
9 (45)				
	10.0			
	ch0 2402	ch0 2402	ch39 2480	ch39 2480
	ch0	ch0	ch39	ch39
	ch0 2402	ch0 2402	ch39 2480	ch39 2480
Interferer level (dBm)	ch0 2402 Low	ch0 2402 High	ch39 2480 Low	ch39 2480 High
	ch0 2402 Low 2300	ch0 2402 High 2583.5	ch39 2480 Low 2300	ch39 2480 High 2583.

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.3 Receiver category 1 - Bluetooth LE 2 Msps (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.2)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 2 Msps): Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- · Channels under test: 0 and 39

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Result:

24 Lo 23 Interferer level (dBm) -1 300 328 limit (dBm) -3	h0 ch0 402 2402 ow High 380 2503.5 6.1 -14.6 53 -53 6.9 38.4	ch39 2480 Low 2380 -15.6 -53	ch39 2480 High 2503.5 -16.6 -53 36.4		
d 24 Lo 23 Interferer level (dBm)	h0 ch0 402 2402 ow Low 300 2330 4.1 -13.6 47 -47 2.9 33.4	ch0 2402 Low 2360 -15.6 -47	ch39 2480 Low 2300 -14.1 -47	ch39 2480 Low 2330 -14.6 -47	ch39 2480 Low 2360 -15.6 -47
24 Hi 252 Interferer level (dBm) -18 300 328 limit (dBm)	h0 ch0 402 2402 ligh 2553.5 2563.5 -13.6 47 -47 33.4	ch0 2402 High 2583.5 -21.1 -47	ch0 2402 High 2813.5 -13.6 -47 33.4	ch0 2402 High 2843.5 -13.6 -47 33.4	2402 High 2673.5 -13.6 -47
24 Hi 252 Interferer level (dBm) -18 300 328 limit (dBm) -4	ch 39 2480 igh 2553.5 5.6 47 1.4 king (out of band) rejecti	ch39 2480 High 2583.5 -15.6 -47 31.4 ion - Bluetooth LE 2	ch39 2480 High 2813.5 -14.6 -47 32.4 Msps	ch39 2480 High 2843.5 -14.6 -47	ch39 2480 High 2873.5 -14.6 -47

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.4 Receiver category 2 - Bluetooth LE 2 Msps (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.3)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 2 Msps): Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- Channels under test: 0 and 39

Result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Interferer level (dBm) 300 328 limit (dBm) Margin (dB)	ch0 2402 Low 2380 -16.1 -57 40.9	ch0 2402 High 2503.5 -14.6 -57 42.4	ch39 2480 Low 2380 -15.6 -57 41.4	ch39 2480 High 2503.5 -16.6 -57 40.4
	2402 Low 2300	ch0 2402 High 2583.5	2480 Low 2300	ch39 2480 High 2583.5
Interferer level (dBm)	-14.1	-15.6	-14.1	-15.6
300 328 limit (dBm)	-47	-47	-47	-47
Margin (dB)	32.9	31.4	32.9	31.4
Figure 76. Receiver blocking (out of band)	rejection - Bluetooth LE 2 Msps		

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.5 Receiver category 1 - Bluetooth LE 500 ksps (LR S = 2) (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.2)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 500 ksps [LR S = 2]): Agilent N5182A
- Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- Channels under test: 0 and 39

Result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Interferer level (dBm) 300 328 limit (dBm) Margin (dB)	ch0 2402 Low 2380 -20.6 -53	ch0 2402 High 2503.5 -19.6 -53	ch39 2480 Low 2380 -20.1 -53 32.9	ch39 2480 High 2503.5 -21.6 -53 31.4		
Interferer level (dBm) 300 328 limit (dBm) Marqin (dB)	2402 Low 2300 -18.1 -47 28.9	ch0 2402 Low 2330 -19.1 -47 27.9	ch0 2402 Low 2360 -20.1 -47 26.9	2480 Low 2300 -19.6 -47 27.4	ch39 2480 Low 2330 -19.1 -47 27.9	ch39 2480 Low 2360 -21.1 -47 25.9
Interferer level (dBm) 300 328 limit (dBm) Marqin (dB)	ch0 2402 High 2523.5 -19.1 -47 27.9	ch0 2402 High 2553.5 -20.1 -47 26.9	ch0 2402 High 2583.5 -19.6 -47 27.4	ch0 2402 High 2613.5 -21.1 -47 25.9	ch0 2402 High 2643.5 -19.1 -47 27.9	ch0 2402 High 2673.5 -19.1 -47 27.9
Interferer level (dBm) 300 328 limit (dBm) Margin (dB) Figure 77. Receiver	ch39 2480 High 2523.5 -20.6 -47 26.4	ch39 2480 High 2553.5 -19.6 -47 27.4	ch39 2480 High 2583.5 -21.1 -47 25.9	ch39 2480 High 2613.5 -21.1 -47 25.9	ch39 2480 High 2643.5 -21.1 -47 25.9	ch39 2480 High 2673.5 -21.1 -47 25.9

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.6 Receiver category 2 - Bluetooth LE 500 ksps (LR S = 2) (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.3)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 500 ksps [LR S = 2]): Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- · Channels under test: 0 and 39

Result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

	ch0	ch0	ch39	ch39
	2402	2402	2480	2480
	Low	Low	High	High
	2380	2503.5	2380	2503.5
Interferer level (dBm)	-21.1	-19.6	-21.1	-21.6
300 328 limit (dBm)	-57	-57	-57	-57
			0.5.0	25.4
Margin (dB)	35.9	37.4	35.9	35.4
Margin (dB)				
Margin (dB)	ch0	ch0	ch39	ch39
Margin (dB)	ch0 2402	ch0 2402	ch39 2480	ch39 2480
Margin (dB)	ch0	ch0 2402 Low	ch39	ch39
Margin (dB)	ch0 2402	ch0 2402	ch39 2480	ch39 2480
Margin (dB) Interferer level (dBm)	ch0 2402 Low	ch0 2402 Low	ch39 2480 High	ch39 2480 High
	ch0 2402 Low 2300	ch0 2402 Low 2583.5	ch39 2480 High 2300	ch39 2480 High 2583.5

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.7 Receiver category 1 - Bluetooth LE 125 ksps (LR S = 8) (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.2)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 125 ksps [LR S = 8]): Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- Channels under test: 0 and 39

Result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Ch0 2402 Low 2380 Interferer level (dBm) -31.1 300 328 limit (dBm) -53 Margin (dB) 21.9	ch0 2402 High 2503.5 -31.1 -53 21.9	ch39 2480 Low 2380 -31.1 -53 21.9	ch39 2480 High 2503.5 -31.1 -53 21.9		
Ch0 2402 Low 2300 Interferer level (dBm) -30.1 300 328 limit (dBm) -47 Marqin (dB) 16.9	ch0 2402 Low 2330 -31.1 -47 15.9	ch0 2402 Low 2360 -31.1 -47	ch39 2480 Low 2300 -31.1 -47	ch39 2480 Low 2330 -31.1 -47	ch39 2480 Low 2360 -31.1 -47 15.9
Ch0 2402 High 2523.5 Interferer level (dBm) -31.1 300 328 limit (dBm) -47 Marqin (dB) 15.9	ch0 2402 High 2553.5 -28.6 -47	ch0 2402 High 2583.5 -30.6 -47	ch0 2402 High 2613.5 -31.1 -47	ch0 2402 High 2643.5 -30.6 -47	ch0 2402 High 2673.5 -30.6 -47
ch39 2480 High 2523.5 Interferer level (dBm) -31.1 300 328 limit (dBm) -47 Margin (dB) 15.9 Figure 79. Receiver blocking	-31.1 -47 15.9	ch39 2480 High 2583.5 -31.1 -47 15.9 on - Bluetooth LE 1	ch39 2480 High 2613.5 -31.1 -47 15.9	ch39 2480 High 2643.5 -31.1 -47 15.9	ch39 2480 High 2673.5 -31.1 -47 15.9

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.2.8 Receiver category 2 - Bluetooth LE 125 ksps (LR S = 8) (Refer to the 300.328 2.1.1 chapter 4.3.1.12.4.3)

The test is performed with only one interfering signal at a time.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 125 ksps [LR S = 8]): Agilent N5182A
- · Generator for interferers: R&S SFU
- Criterion: PER < 10 %
- The expected signal is set to P_{min} + 6 dB (-82 dBm). The interferer is increased until the PER threshold is reached.
- · Channels under test: 0 and 39

Result:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

	ch0	ch0	ch39	ch39
	2402	2402	2480	2480
	Low	Low	High	High
	2380	2503.5	2380	2503.5
Interferer level (dBm)	-21.1	-19.1	-31.1	-31.1
802.15.4 limit (dBm)	-57	-57	-57	-57
			25.9	25.9
Margin (dB)	35.9	37.9		
Margin (dB)				
Margin (dB)	ch0	ch0	ch39	ch39
Margin (dB)	ch0 2402	ch0 2402	ch39 2480	ch39 2480
Margin (dB)	ch0	ch0 2402 Low	ch39	ch39
Margin (dB)	ch0 2402	ch0 2402	ch39 2480	ch39 2480
Margin (dB) Interferer level (dBm)	ch0 2402 Low	ch0 2402 Low	ch39 2480 High	ch39 2480 High
	ch0 2402 Low 2300	ch0 2402 Low 2583.5	ch39 2480 High 2300	ch39 2480 High 2583.5

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.3 Blocking interferers

3.3.2.5.3.1 Bluetooth LE 1 Msps

To verify that the receiver performs satisfactorily with frequency outside the 2400 MHz-2483.5 MHz, a CW is used as the interferer source.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 1 Msps): Agilent N5182A
- · Generator for the blocker: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm. The interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz)

Result:

Table 27. Blocking interferers - 1 Msps

Expected	ch12	ch12	ch12	ch12	
signal 2426 MHz @-67 dBm	2426 MHz	2426 MHz	2426 MHz	2426 MHz	
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	
Unexpected level (dBm)	-30	-35	-35	-30	
Status (unexpected level)	PASS	PASS	PASS	PASS	

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 27. Blocking interferers - 1 Msps...continued

Expected	ch12	ch12	ch12	ch12	
signal 2426 MHz @-67 dBm	2426 MHz	2426 MHz	2426 MHz	2426 MHz	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 10
Status (UnW level -50 dBm)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 3

Conclusion:

• Good margin, in line with the expected results.

3.3.2.5.3.2 Bluetooth LE 2 Msps

To verify that the receiver performs satisfactorily with frequency outside the 2400 MHz-2483.5 MHz, a CW is used as the interferer source.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 2 Msps): Agilent N5182A
- · Generator for the blocker: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm. The interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz)

Result:

Table 28. Blocking interferers - 2 Msps

Expected	ch12	ch12	ch12	ch12	
signal 2426 MHz @-67 dBm	2426 MHz	2426 MHz	2426 MHz	2426 MHz	
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	
Unexpected level (dBm)	-30	-35	-35	-30	
Status (unexpected level)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 10
Status (UnW level -50 dBm)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 3

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.3.3 Bluetooth LE 500 ksps (LR S = 2)

To verify that the receiver performs satisfactorily with frequency outside the 2400 MHz-2483.5 MHz, a CW is used as the interferer source.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 500 ksps (LR S = 2)): Agilent N5182A
- · Generator for the blocker: R&S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm. The interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz)

Result:

Table 29. Blocking interferers - 500 ksps

Expected	ch12	ch12	ch12	ch12	
signal 2426 MHz @-67 dBm	2426 MHz	2426 MHz	2426 MHz	2426 MHz	
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)	
Unexpected level (dBm)	-30	-35	-35	-30	
Status (unexpected level)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 10
Status (UnW level -50 dBm)	PASS	PASS	PASS	PASS	
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 3

Conclusion:

· Good margin, in line with the expected results.

3.3.2.5.3.4 Bluetooth LE 125 ksps (LR S = 8)

To verify that the receiver performs satisfactorily with frequency outside the 2400 MHz-2483.5 MHz, a CW is used as the interferer source.

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 125 ksps (LR S = 8)): Agilent N5182A
- · Generator for the blocker: R&S SFU

V13728 All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm. The interferer level is increased until the PER threshold is reached.
- Channel under test: 12 (2426 MHz)

Result:

Table 30. Blocking interferers – 125 ksps

Table 30. Blocking Interferers – 125 ksps							
Expected	ch12	ch12	ch12	ch12			
signal 2426 MHz @-67 dBm	2426 MHz	2426 MHz	2426 MHz	2426 MHz			
Interferer (MHz)	30 - 2000 (step 10 MHz)	2003 – 2399 (step 3 MHz)	2484 – 2997 (step 3 MHz)	3 GHz - 12.75 GHz (step 25 MHz)			
Unexpected level (dBm)	-30	-35	-35	-30			
Status (unexpected level)	PASS	PASS	PASS	PASS			
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 10		
Status (UnW level -50 dBm)	PASS	PASS	PASS	PASS			
Number of blocking fail	0	0	0	0	Failed blockers must not exceed 3		

Conclusion:

• Good margin, in line with the expected results.

3.3.2.5.4 Intermodulation

This test verifies that the receiver intermodulation performance is satisfactory.

Two interferers are used in combination with the expected signal: a sinusoid non-modulated signal and a modulated signal with PRSB15 data.

3.3.2.5.4.1 Bluetooth LE 1 Msps

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 1 Msps): Agilent N5182A
- Generator for the first interferer (CW): R&S SML03
- Generator for the second interferer (PRBS15): R and S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -67 dBm; the interferer levels are set to the data sheet specification values.
- Channels under test: 0, 19, and 39.

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

	ch0	ch0	ch0	ch0	ch0	ch0
	2402	2402	2402	2402	2402	2402
	Low	Low	Low	Low	Low	Low
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer2 (Mod) (MHz)	-10	-8	-6	6	8	10
Interferer level (dBm)	-21.6	-21.6	-22.6	-22.6	-22.6	-23.
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	14.5	13.5	12.5	12.5	12.5	13.0
	ch19	ch19	ch19	ch19	ch19	ch1
	2440	2440	2440	2440	2440	244
	Mid	Mid	Mid	Mid	Mid	Mic
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer2 (Mod) (MHz)	-10	-8	-6	6	8	10
Interferer level (dBm)	-22.6	-22.6	-22.6	-22.6	-22.6	-23.
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	13.5	12.5	12.5	12.5	12.5	13.
	ch39	ch39	ch39	ch39	ch39	ch3
	2480	2480	2480	2480	2480	248
	High	High	High	High	High	Hig
Interferer1 (CW) (MHz)	-5	-4	-3	3	4	5
Interferer2 (Mod) (MHz)	-10	-8	-6	6	8	10
Interferer level (dBm)	-23.1	-22.6	-23.1	-23.6	-23.1	-23.
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	13.0	12.5	12.0	11.5	12.0	12.5

Figure 81. Intermodulation - 1 Msps

Conclusion:

Good margin, in line with the expected results.

3.3.2.5.4.2 Bluetooth LE 2 Msps

Flashed software: Connectivity test

Test method:

- Generator for the desired signal (Bluetooth LE 2 Msps): Agilent N5182A
- Generator for the first interferer (CW): R&S SML03
- Generator for the second interferer (PRBS15): R and S SFU
- Criterion: PER < 30.8 % with 1500 packets
- The expected signal is set to -64 dBm; the interferer levels are set to the data sheet specification values.
- Channels under test: 0, 19, and 39.

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

	ch0	ch0	ch0	ch0	ch0	ch0
	2402	2402	2402	2402	2402	2402
	Low	Low	Low	Low	Low	Low
Interferer1 (CW) (MHz)	-10	-8	-6	6	8	10
Interferer2 (Mod) (MHz)	-20	-16	-12	6	8	10
Interferer level (dBm)	-20.6	-20.6	-21.6	-21.6	-23.6	-24.1
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	15.5	14.5	13.5	13.5	11.5	12.0
	ch19	ch19	ch19	ch19	ch19	ch19
	2440	2440	2440	2440	2440	2440
	Mid	Mid	Mid	Mid	Mid	Mid
Interferer1 (CW) (MHz)	-10	-8	-6	6	8	10
Interferer2 (Mod) (MHz)	-20	-16	-12	6	8	10
Interferer level (dBm)	-23.6	-23.6	-23.6	-23.6	-23.6	-24.1
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	12.5	11.5	11.5	11.5	11.5	12.0
	ch39	ch39	ch39	ch39	ch39	ch39
	2480	2480	2480	2480	2480	2480
	High	High	High	High	High	High
Interferer1 (CW) (MHz)	-10	-8	-6	6	8	10
Interferer2 (Mod) (MHz)	-20	-16	-12	6	8	10
Interferer level (dBm)	-24.1	-23.6	-24.1	-24.6	-24.1	-24.6
Datasheet limit (dBm)	-24	-23	-23	-23	-23	-24
Margin (dB)	12.0	11.5	11.0	10.5	11.0	11.5

Conclusion:

Good margin, in line with the expected results.

4 802.15.4 application

4.1 Test presentation

4.1.1 List of tests

- 1. Conducted tests
 - a. TX tests
 - i. Frequency accuracy
 - ii. Phase noise
 - iii. TX power
 - iv. TX spurious
 - v. Harmonics
 - vi. EVM and offset EVM

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- vii. Upper band edge
- b. RX tests
 - i. Sensitivity
 - ii. Sensitivity bathtub
 - iii. Maximum Input Level
 - iv. RX spurious
 - v. LO leakage
 - vi. Interferers (as per 802.15.4 requirements)
 - vii. Co-channel
 - viii. Receiver Blocking (as per ETSI 300 328 requirements)

4.2 Test summary

<u>Table 31</u> and <u>Table 32</u> synthesize the main tests performed on the K32W148 modules. This document details most of the test results. To get further information, contact your NXP local contact.

Table 31. List of tests (Europe)

		Reference	Limit	Status
	TX maximum power	ETSI EN 300 328	20 dBm, 100 mW (radiated)	PASS
	Eirp TX spectral density	ETSI EN 300 328	10 dBm/MHz	PASS
	TX spectral density	802.15.4_2011	-20 dBc or -30 dBm (100 kHz, f-fc > 3.5 MHz)	PASS
	Spurious 30 MHz – 1 GHz	ETSI EN 300 328	-36 dBm or -54 dBm (depends on frequency) (100 kHz BW)	PASS
Transmission	Spurious 1 GHz - 12.5 GHz	ETSI EN 300 328	-30 dBm (1 MHz BW)	PASS
	EVM	802.15.4_2011	35 %	PASS
	TX frequency tolerance	802.15.4_2011	+/- 40 ppm	PASS
	Reachable low limit of maximum power	802.15.4_2011	-3 dBm	PASS
	Phase noise (unspread)	802.15.4_2003	NA	For information
	RX emissions 30 MHz – 1 GHz	ETSI EN 300 328	-57 dBm (100 kHz)	PASS
Decention	RX emissions 1 GHz - 12.5 GHz	ETSI EN 300 328	-47 dBm (1 MHz)	PASS
Reception	RX sensitivity	802.15.4	-85 dBm	PASS
	Adjacent channel interference rejection N+/-1	802.15.4_2011	0 dB	PASS

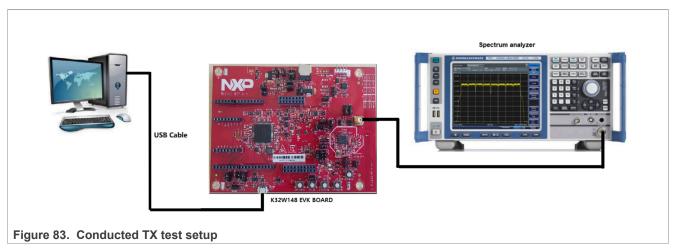
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 31. List of tests (Europe)...continued

		Reference	Limit	Status
Alternate channel interference rejection N+/-2		802.15.4_2011	30 dB	PASS
	Receiver blocking	ETSI EN 300 328	-57 dBm/-47 dBm	PASS
	RX maximum input level	802.15.4_2011	-20 dBm	PASS
Miscellaneous	Poturn loss (S11)	Return loss in TX mode	For information	
	Return loss (S11)	Return loss in RX mode	For information	

Table 32. List of tests (US)

		Reference	Limit	Status	
Transmission	Spurious 1 GHz - 12.5 GHz	FCC part15	-41 dBm	- PASS	
			(1 MHz BW)	1700	


4.3 Conducted tests

4.3.1 TX tests

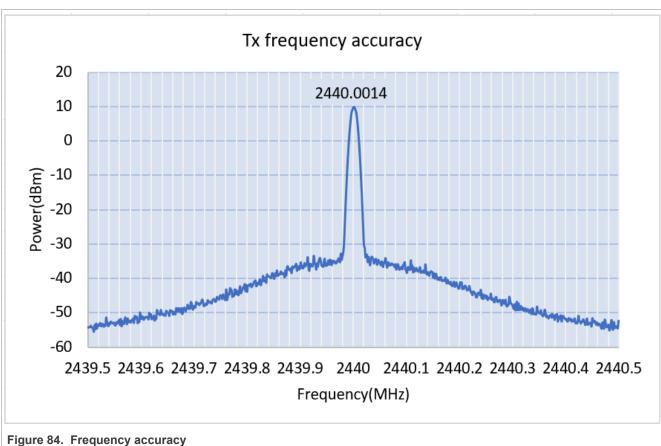
4.3.1.1 Test setup

The TX power of the K32W148 is set to +10 dBm.

Connect the RF port of the module to the spectrum analyzer via RF cable.

4.3.1.2 Frequency accuracy

Test method:


AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- · Set the radio to:
 - TX mode
 - CW
 - Continuous mode
 - Frequency: Channel 18
- Set the analyzer to:
 - Center frequency = 2.44 GHz
 - Span = 1 MHz
 - Ref amp = 20 dBm
 - RBW = 10 kHz
- · Measure the CW frequency with the marker of the spectrum analyzer.

Result:

- Measured frequency: 2440.0014 MHz
- ppm value = 0.57 ppm

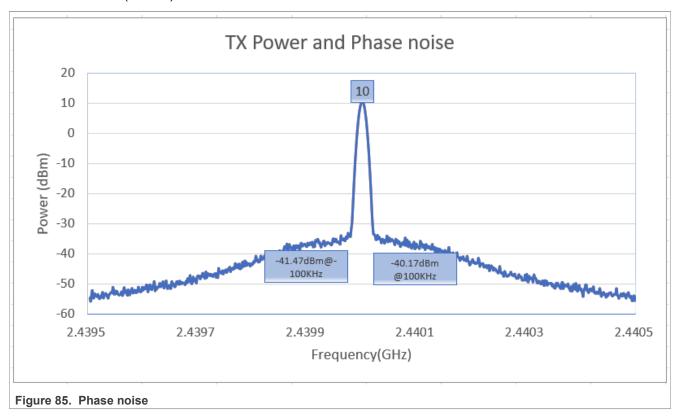
Table 33. Frequency accuracy

	Result Target 802.15.4 limit				
Result Target		Target	802.15.4 limit		
	0.57 ppm +/-25 ppm		+/-40 ppm		

Note: The frequency accuracy depends on the XTAL model. The model used on the EVK is NX2016SA EXS00A-CS11775 from NDK. And set the XtalTrim to 15.

Conclusion:

AN13728 All information provided in this document is subject to legal disclaimers.


K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• The channel frequency is correctly centered therefore fully compliant with the 802.15.4 specifications.

4.3.1.3 Phase noise @ 100 kHz offset

Test method:

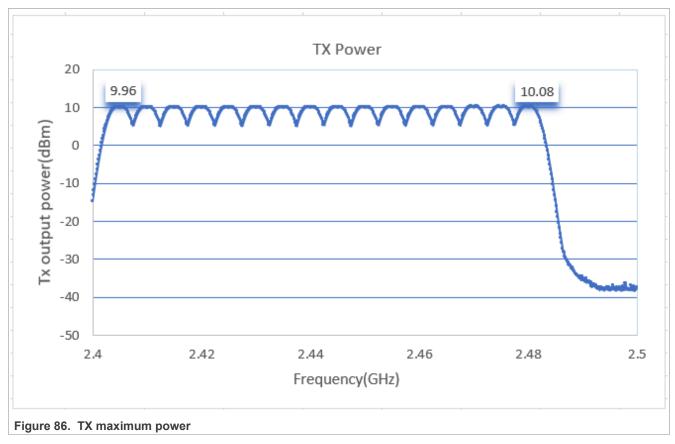
- · Set the radio to:
 - TX mode
 - CW
 - Continuous mode
 - Frequency: Channel 18
- Set the analyzer to:
 - Center frequency = 2.44 GHz
 - Span = 1 MHz
 - Ref amp = 20 dBm
- Measure the phase noise at 100 kHz offset frequency.
 - RBW = 10 kHz (40 dBc)

Result:

- Marker value = 41.1 dBm within 10 kHz RBW
 - Marker delta = 10.0 (-41.1) = 51.1 dB
 - Phase noise at 100 kHz offset = 51.1-10 Log (10 kHz) = 91.1 dBc/Hz

Conclusion:

· Phase noise is for information only.


AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.1.4 TX power (fundamental)

Test method:

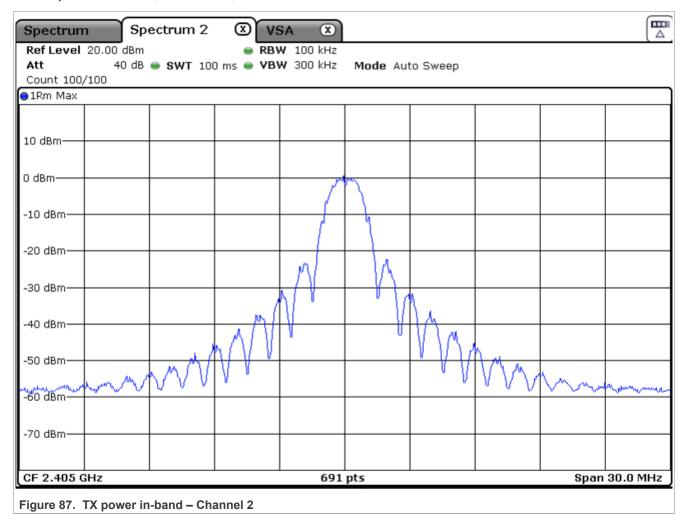
- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- Set the analyzer to:
 - Start frequency = 2.4 GHz
 - Stop frequency = 2.5 GHz
 - Ref amp = 20 dBm
 - Sweep time = 100 ms
 - RBW = 3 MHz
 - Max Hold mode
 - Detector: Peak
- Sweep all the channels from ch11 to ch26.

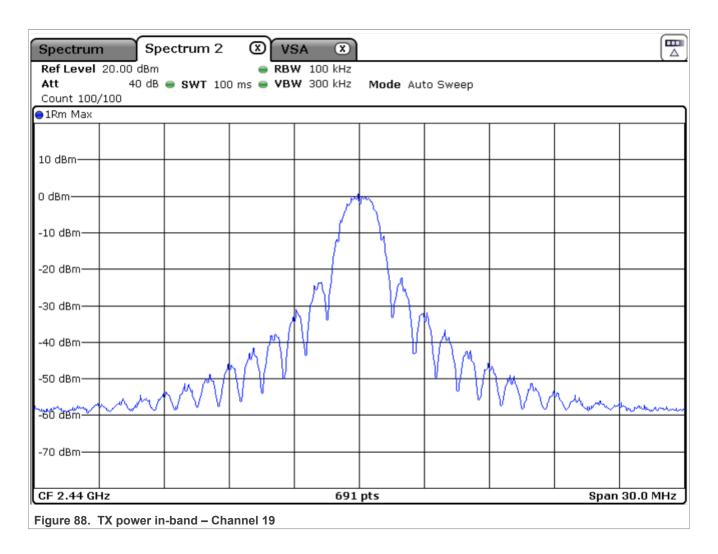
Result:

- Maximum power is on channel 26: +10.08 dBm.
- Minimum power is on channel 11: +9.96 dBm.
- Tilt over frequencies is 0.1 dB.

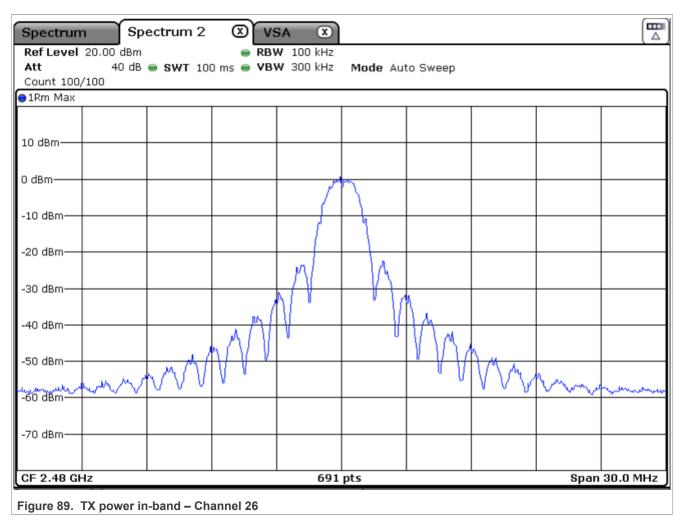
Conclusion:

• The power is flat over frequency.


All information provided in this document is subject to legal disclaimers.

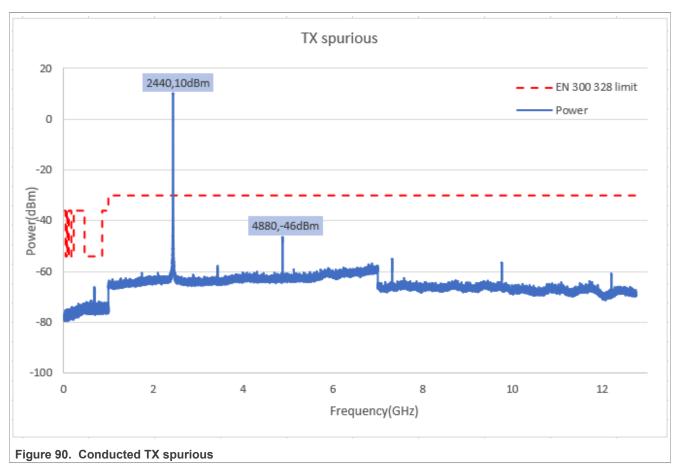

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.1.5 TX power in-band


Test method:

- · Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
 - Data rate (1 Msps, 2 Msps, 500 ksps, 125 ksps)
- · Set the analyzer to:
 - Start freq = 2.35 GHz
 - Stop freq = 2.5 GHz
 - Ref amp = 10 dBm
 - Sweep time = 100 ms
 - RBW = 100 kHz
 - Video BW = 300 kHz
 - Max Hold mode
 - Detector = RMS
 - Number of Sweeps = 10
- Sweep on Channel 11, Channel 18, and Channel 26.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications


Conclusion:

• These results are compliant to 802.15.4.

4.3.1.6 TX spurious

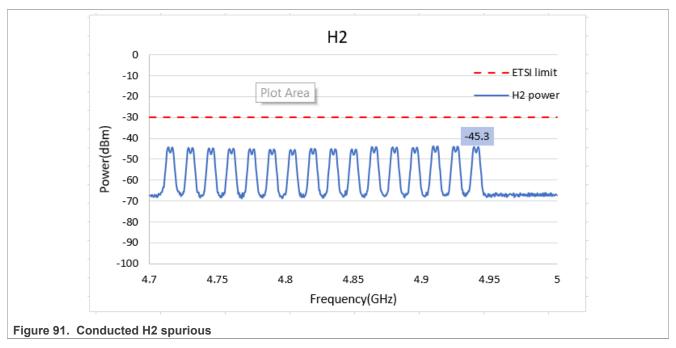
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.1.6.1 Global view from 0.3 GHz to 12.5 GHz (expected = channel 18)

Conclusion:

- There are no TX spurs above the EN 300 328 limit. It is 16 dB margin.
- · Harmonics are measured in the following paragraphs.

4.3.1.6.2 H2 (ETSI test conditions)


Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- Set analyzer to:
 - Start frequency = 4.8 GHz
 - Stop frequency = 5 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 1 MHz
 - Max hold mode
 - Detector peak
- Sweep all the channels from Ch11 to Ch26.

AN13728

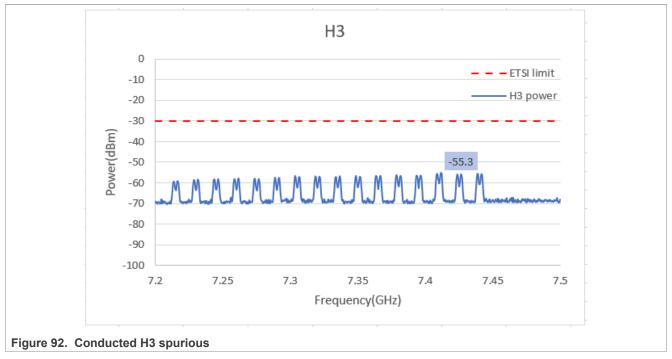
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Results:

Maximum power is on channel 11: -45.3 dBm.

Conclusion:

• There is 15.3 dB margin to ETSI limit.


4.3.1.6.3 H3 (ETSI test conditions)

Test method:

The test method is similar as for the H2, except that the spectrum analyzer frequency start/stop are set to 7.2 GHz and 7.5 GHz.

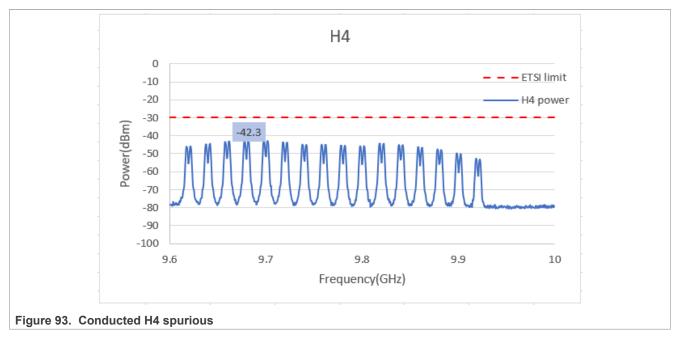
Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Maximum power is on channel 19: -55.3 dBm.

Conclusion:

• There is 25.3 dB margin to ETSI limit.


4.3.1.6.4 H4 (ETSI test conditions)

Test method:

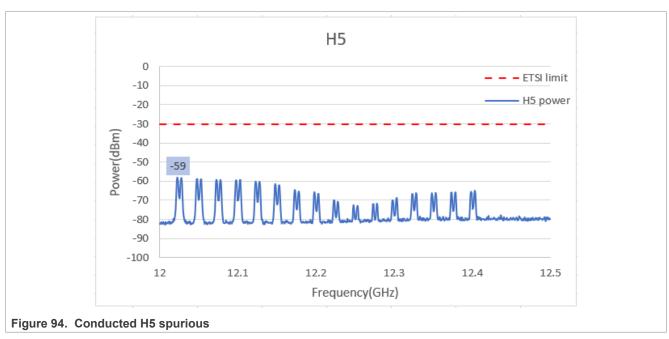
The test method is similar as for the H2, except that the spectrum analyzer frequency span is set from 9.6 GHz to 10.0 GHz.

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Maximum power is on channel 16: -42.3 dBm.

Conclusion:


• There is 12.3 dB margin to ETSI limit.

4.3.1.6.5 H5 (ETSI test conditions)

Test method:

The test method is similar as for the H2, except that the spectrum analyzer frequency start/stop are set to 12.0 GHz to 12.5 GHz.

Results:

AN13728

All information provided in this document is subject to legal disclaimers.

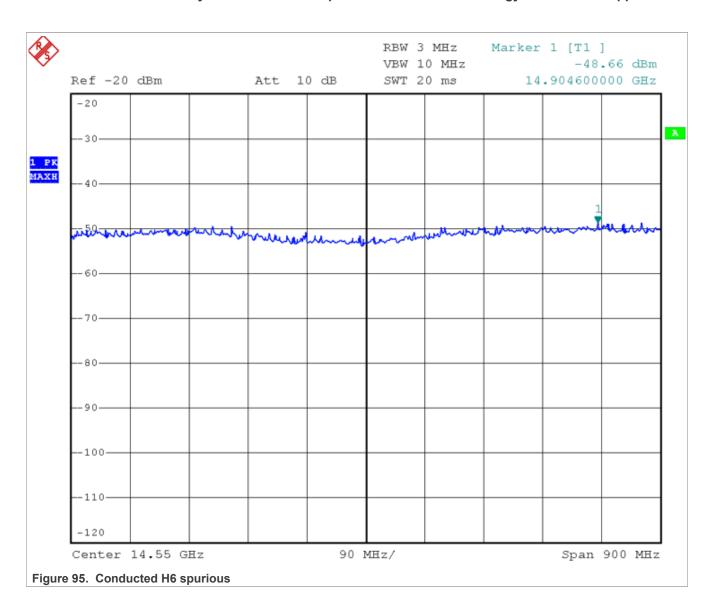
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

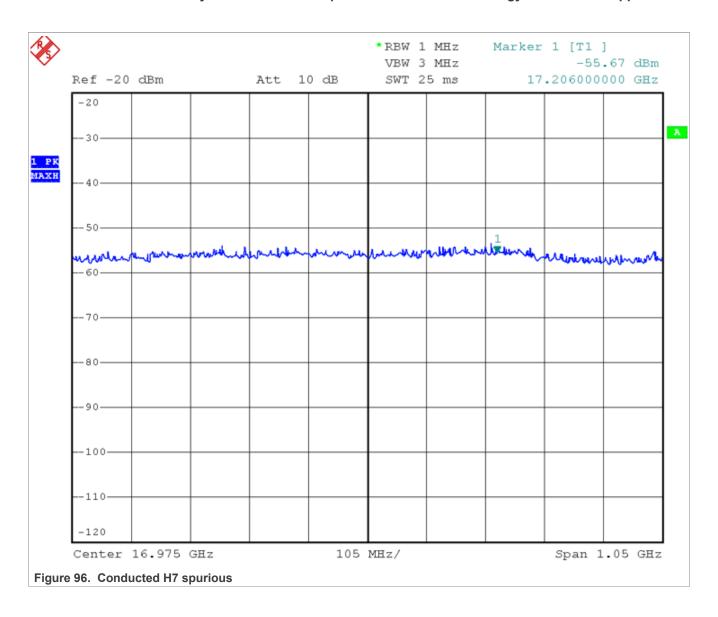
Maximum power is on channel 16: -59 dBm.

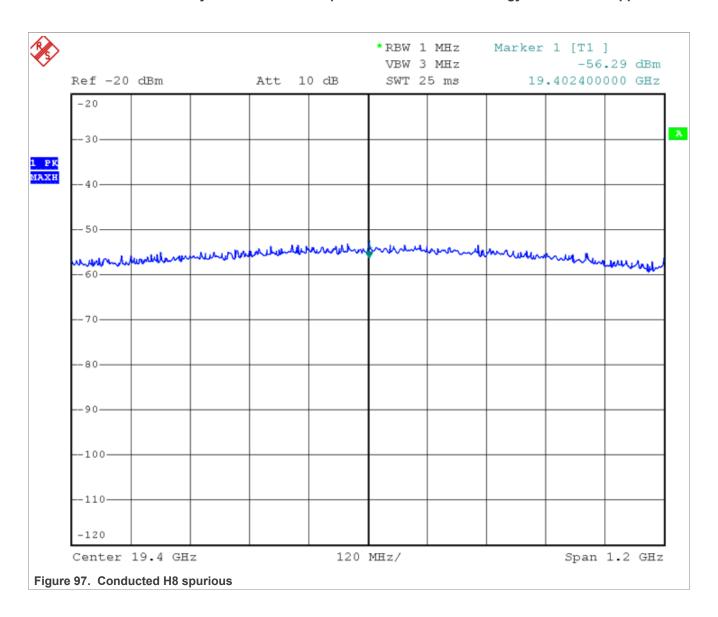
Conclusion:

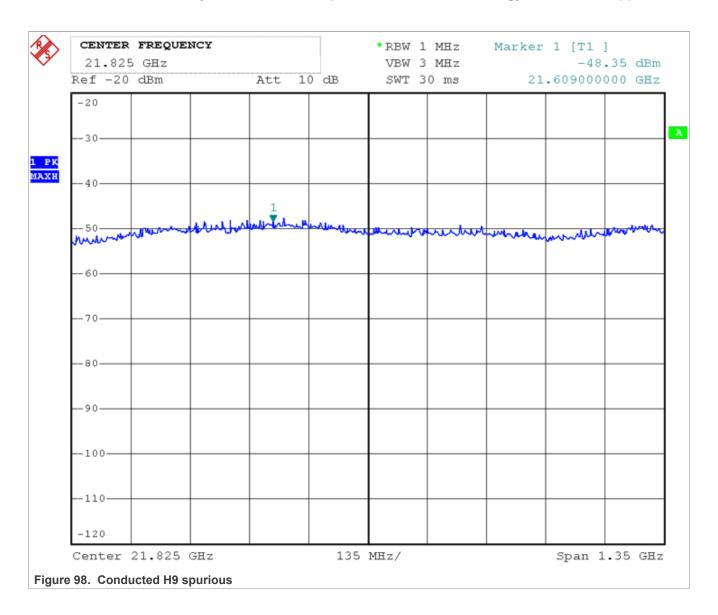
• There is 29 dB margin to ETSI limit.

4.3.1.6.6 H6 to H10 (ETSI test conditions)

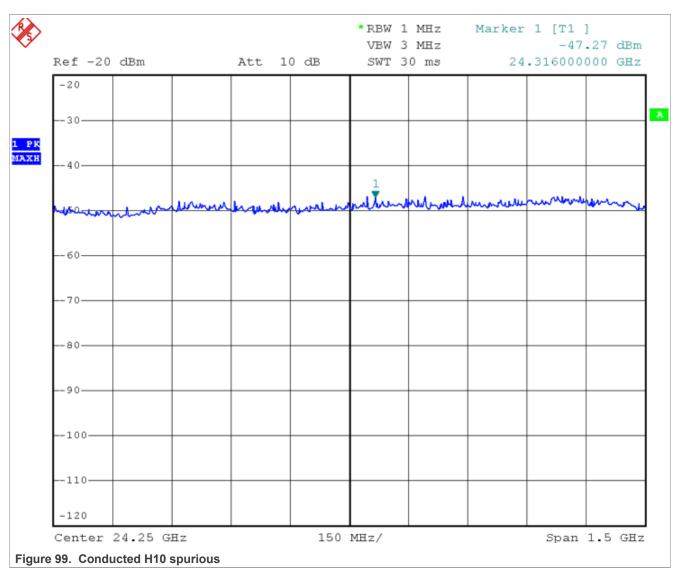

Test method:


The test method is similar as for the H2, except that the spectrum analyzer frequency span is set to corresponding frequency range.


Table 34. Conducted H6 to H10 spurious


	Н6	H7	Н8	Н9	H10
EN limit	-30	-30	-30	-30	-30
Spurious Power	-48.6	-55.6	-55.2	-48.3	-47.3
Margin	18.6	25.6	25.2	18.3	17.3

Results:



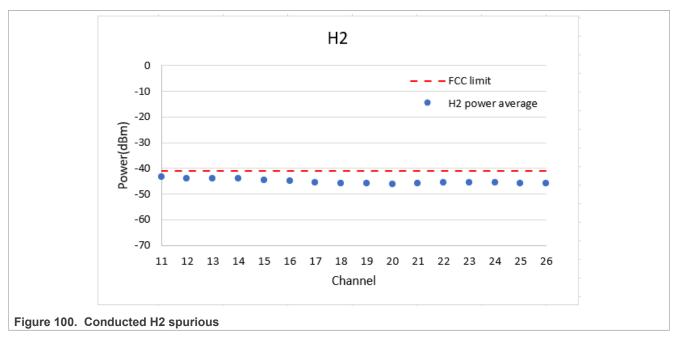
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

• There is good margin to the ETSI limit.

4.3.1.6.7 H2 (FCC test conditions)

Test method:


- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- Set analyzer to:
 - Start frequency = 4.8 GHz
 - Stop frequency = 5 GHz
 - Ref amp = -20 dBm
 - RF attenuation = sweep time = 100 ms
 - RBW = 1 MHz

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

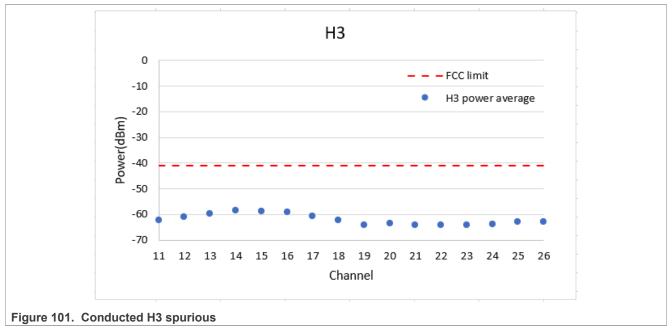
- Trace mode: Average
- Detector RMS
- Sweep all the channels from ch11 to ch26.

Results:

Maximum power is on channel 11: -43.5 dBm.

Conclusion:

• There is 2.5 dB margin to FCC limit.


4.3.1.6.8 H3 (FCC test conditions)

Test method:

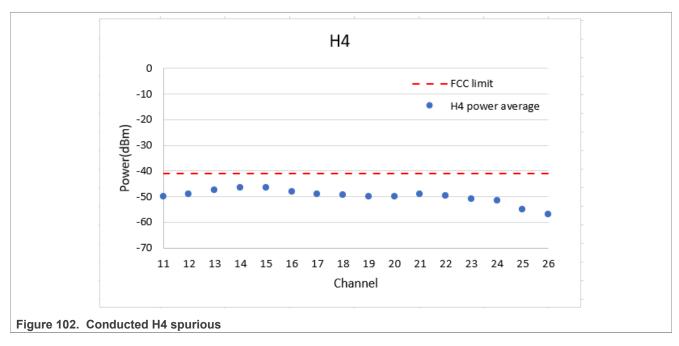
The test method is similar as for the H2, except that the spectrum analyzer frequency start/stop are set to 7.2 GHz and 7.5 GHz.

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Maximum power is on channel 18 to 26: -58 dBm.

Conclusion:


• There is 17 dB margin to FCC limit.

4.3.1.6.9 H4 (FCC test conditions)

Test method:

The test method is similar as for the H2, except that the spectrum analyzer frequency span is set from 9.6 GHz to 10.0 GHz.

Results:

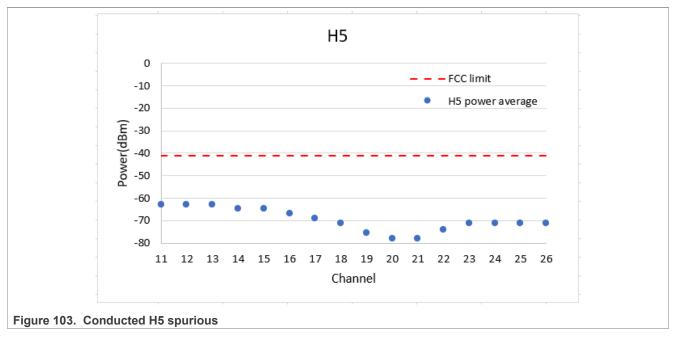
AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Maximum power is on channel 17: -46 dBm.

Conclusion:


• There is 5 dB margin to FCC limit.

4.3.1.6.10 H5 (FCC test conditions)

Test method:

The test method is similar as for the H2, except that the spectrum analyzer frequency span is set from 12 GHz to 12.5 GHz.

Results:

Maximum power is on channel 17: -63 dBm.

Conclusion:

• There is 22 dB margin to FCC limit.

4.3.1.6.11 H6 to h10 (FCC test conditions)

Test method:

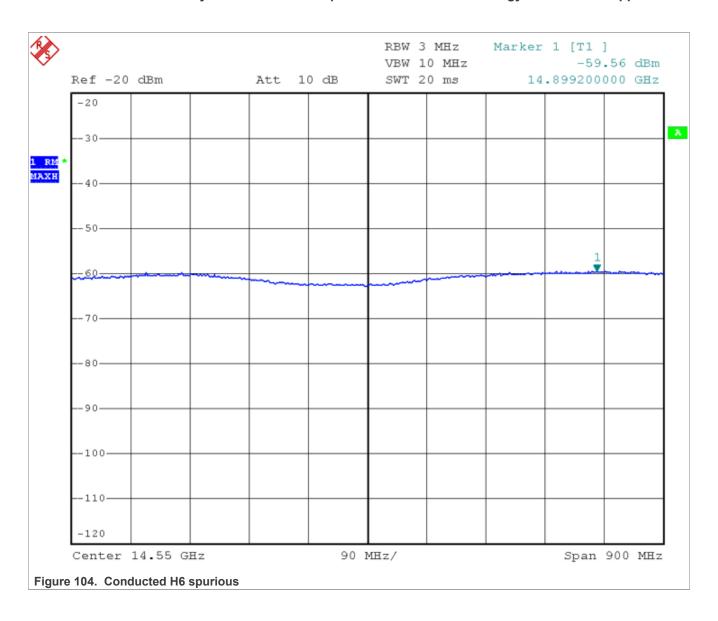
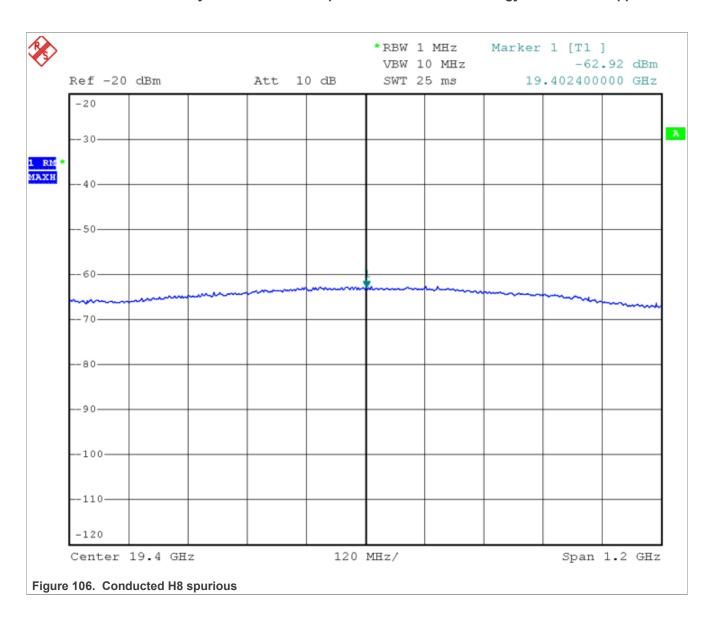
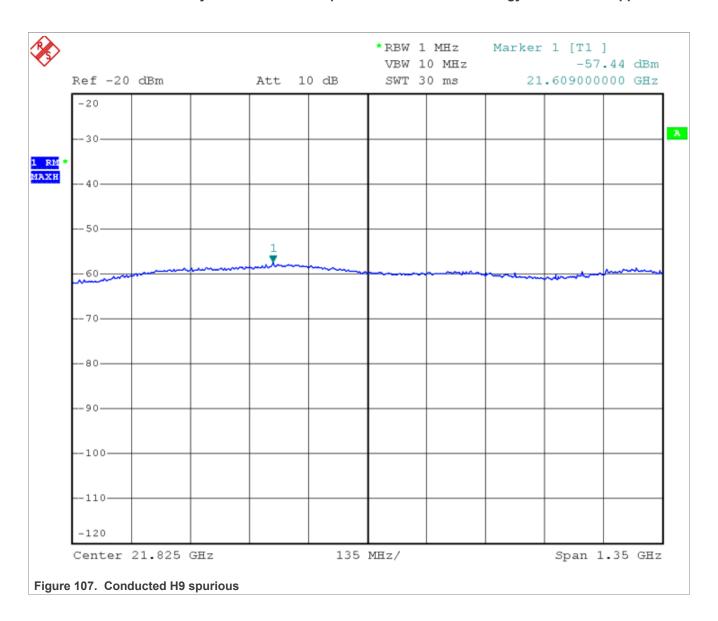
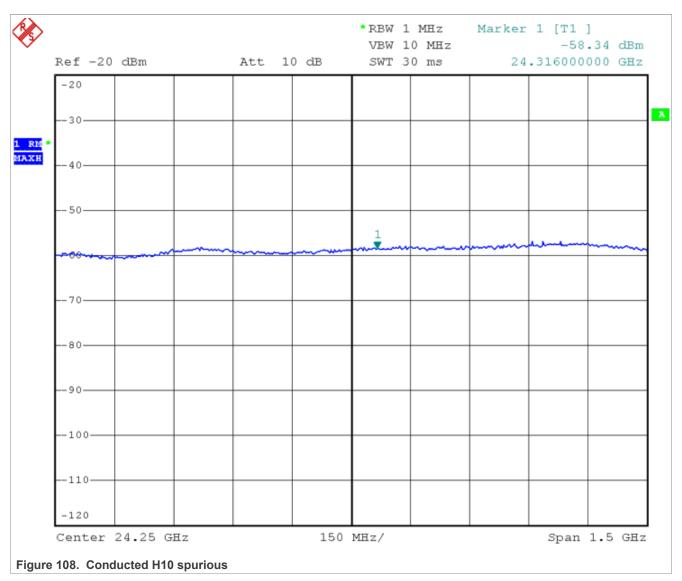

The test method is similar as for the H2, except that the spectrum analyzer frequency span is set to corresponding frequency range.


Table 35. Conducted H6 to H10 spurious


	Н6	H7	Н8	Н9	H10
FCC limit	-41.5	-41.5	-41.5	-41.5	-41.5
Spurious Power	-59.5	-63.2	-62.9	-57.4	-58.3
Margin	18	21.7	21.4	15.9	16.8


Results:

All information provided in this document is subject to legal disclaimers.



K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

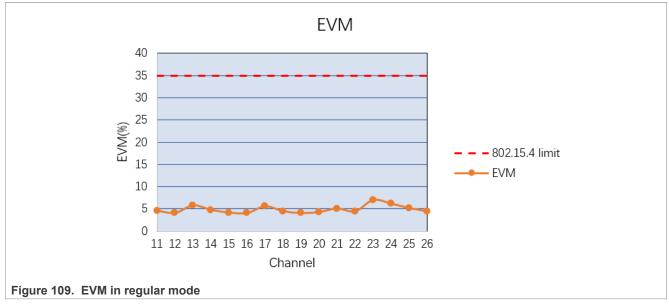
Conclusion:

• There is **good** margin to the FCC limit on H6, H7, H8, H9, and H10.

4.3.1.7 TX modulation

4.3.1.7.1 EVM

Test method:


- Connect the RF port of the module to the R&S FSV spectrum analyzer. To do the EVM measurement, use the specific menu of the SA.
- Set the K45W in continuous modulated mode.
- Set the TX frequency to Channel 11.
- · Measure the offset EVM value.
- · Repeat the test for each channel.

Result:

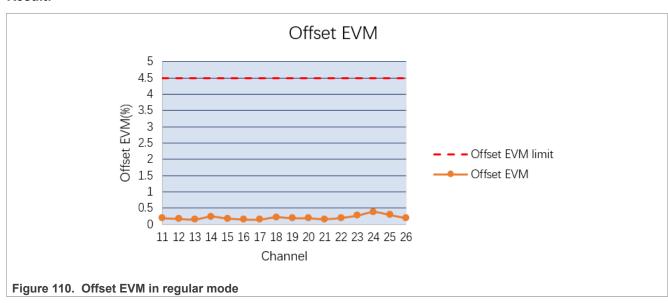
All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Figure 109 shows the EVM test result.

Maximum value is on channel 23 = 7.0 %.

Conclusion:


· Very good margin.

4.3.1.7.2 Offset EVM

Test method:

Similar method as for the EVM measurement

Result:

Maximum value is on channel 23 = 0.38 %.

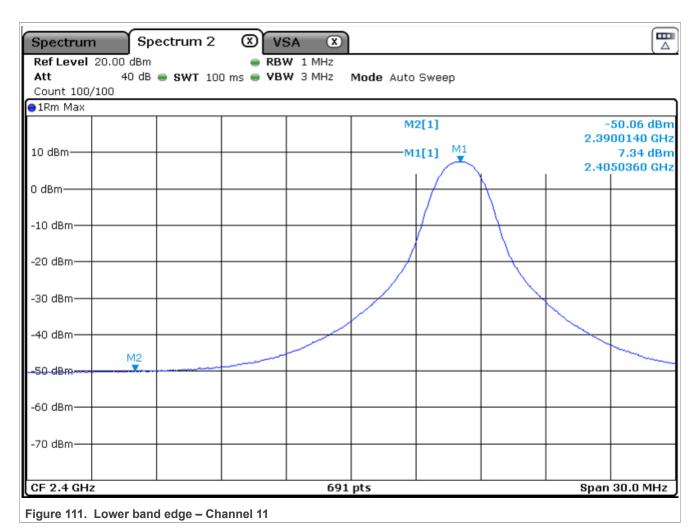
Conclusion:

AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

• Very good margin vs 802.15.4 limit.


4.3.1.8 Lower band edge - MIIT China

Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Burst mode
 - Set the Channel 11 (2.405 GHz)
- Set analyzer to:
 - Start freq = 2.385 GHz
 - Stop freq = 2.415 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - Sweep point: 8001 pts
 - **–** RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector = RMS MaxHold

Results:

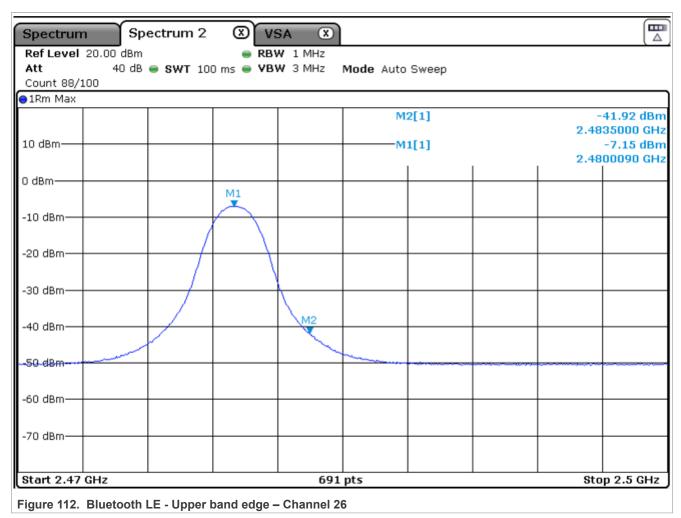
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

- The lower band edge test passes the Bluetooth SIG (MIIT-China) certification.
- There is good margin to MIIT-China) limit (-50 dBm below 2.39 GHz).

4.3.1.9 Upper band edge - MIIT China

Test method:


- · Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
 - Maximum RF output power +10 dBm (not passing the FCC requirement)
 - Set the channel 26 (2.48 GHz).
 - Set the power -5 dBm for 802.15.4.
- Set analyzer to:
 - Start freq = 2.477 GHz
 - Stop freq = 2.507 GHz
 - Ref amp = -20 dBm
 - Sweep time = 40 ms

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Sweep point: 8001 pts
- RBW = 1 MHz
- Video BW = 3 MHz
- Detector = RMS, Max Hold

Results:

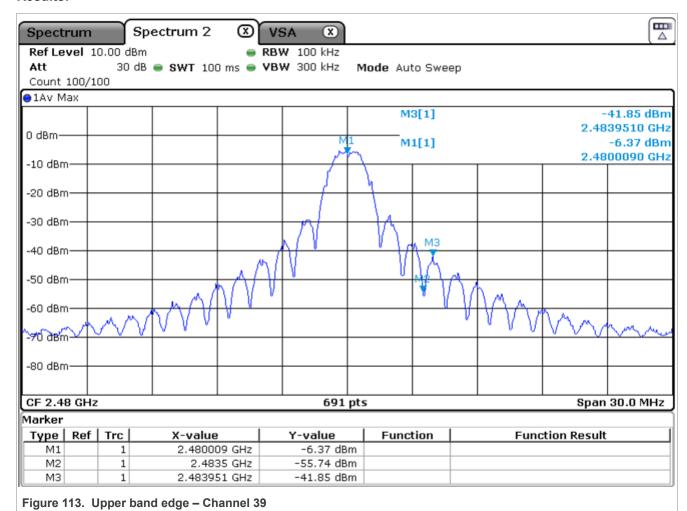
Conclusion:

• The upper band edge test passes the Bluetooth SIG (MIIT-China) certification in TX power have to set down to -5 dBm from +10 dBm on ch26.

4.3.1.10 Upper band edge (FCC ANSI C63.10, 558074 D01 DTS)

Test method:

- · Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
 - Maximum RF output power +10 dBm (does not pass the FCC requirement)


AN13728

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- Set the RF output power +5 dBm.
- · Set analyzer to:
 - Start freq = 2.475 GHz
 - Stop freq = 2.485 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 100 kHz
 - Video BW = 300 kHz
 - Detector = Average
 - Average mode: power
 - Number of Sweeps = 100
 - Set Channel 26 (2.48 GHz)
 - Trace mode: Max hold

Results:

Modulation	TX power +5 dBm
Level @2.4835 GHz	-42 dBm

FCC limit: < -41.15 dBm

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

• The upper band edge test passes the FCC certification (<41.15dBm@2.4835GHz) in TX power have to set down to +5 dBm from +10 dBm on ch26.

4.3.1.11 Out of band (ETSI 300 328 chapter 5.4.8.2.1)

Test method:

- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- · Set analyzer to:
 - Start freq = 2.375 GHz
 - Stop freq = 2.510 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - RBW = 1 MHz
 - Video BW = 3 MHz
 - Detector = Average
 - Average mode: Power
 - Number of Sweeps = 100
 - Set Channel 0 (2.402 GHz) and 39 (2.48 GHz)
 - Trace mode: Max hold

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

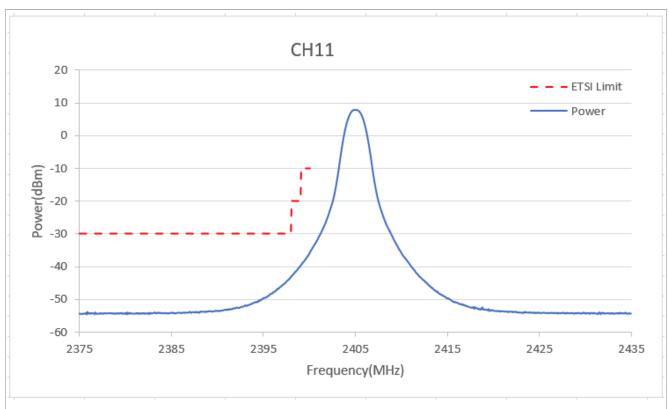
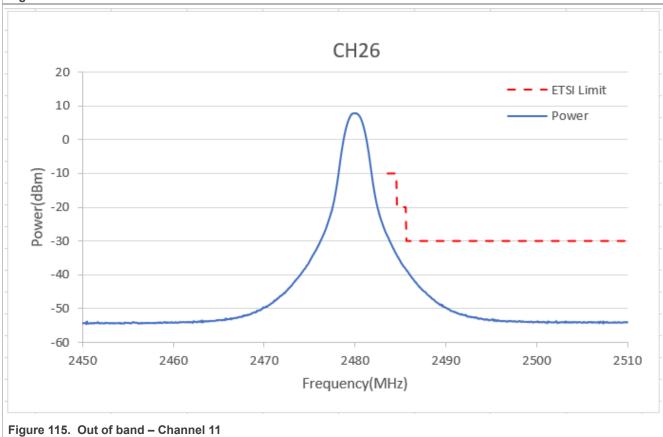
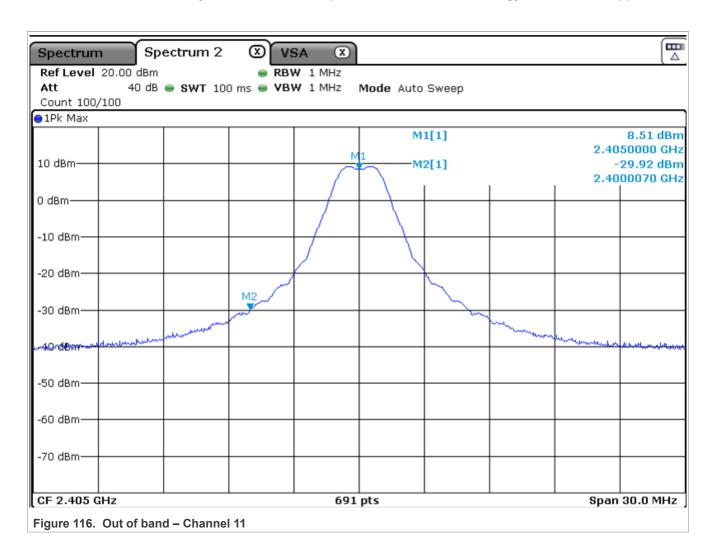



Figure 114. Out of band - Channel 11

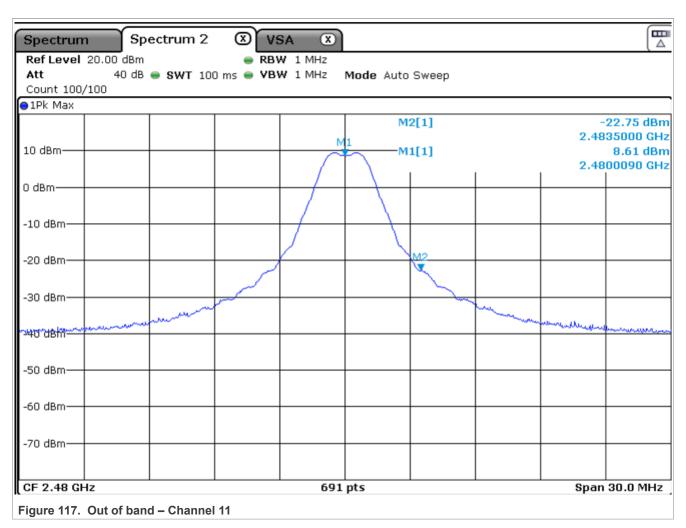
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

• The out of band test passes the ETSI certification.


4.3.1.12 Out of band (ARIB STD T-66)

Test method:


- Set the radio to:
 - TX mode
 - Modulated
 - Continuous mode
- · Set analyzer to:
 - Start freq = 2.475 GHz
 - Stop freq = 2.485 GHz
 - Ref amp = -20 dBm
 - Sweep time = 100 ms
 - **–** RBW = 1 MHz
 - Video BW = 1 MHz
 - Detector = Peak
 - Average mode: Power
 - Number of Sweeps = 100
 - Set Channel 0 (2.402 GHz) and 39 (2.48 GHz)
 - Trace mode: Max hold

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Conclusion:

• The out of band test passes the ARIB STD T-66 certification.

4.3.2 RX tests

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.2.1 Test setup

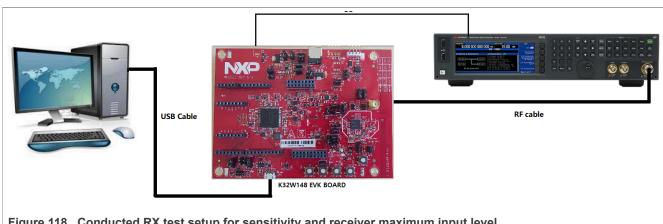
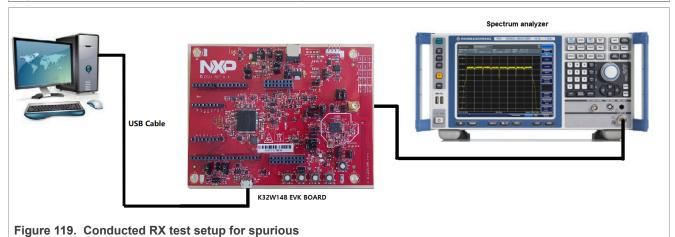
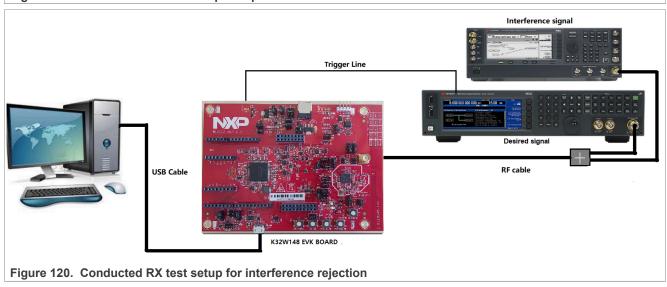




Figure 118. Conducted RX test setup for sensitivity and receiver maximum input level

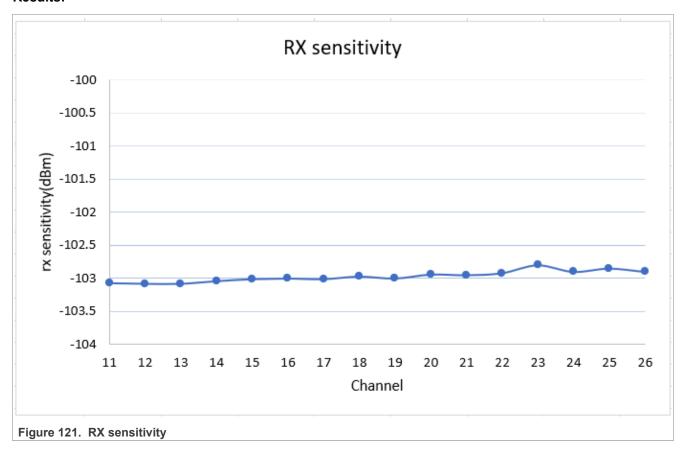
4.3.2.2 RX sensitivity

Test method:

To avoid any interference, place the carrier board and K32W148 module in an RF shield room.

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications


Generator: Keysight N5182B

The generator is used in ARB mode. It generates a pattern of 1000 packets of 20 octets. The DIO19 of the K32W148 is connected to the trigger input of the generator.

A TERATERM window is used to control the module.

- · Set the receive frequency to Channel 11.
- · Set the module in Trigger packet test.
- The connection is automatically established and the Packet Error Rate (PER) is measured.
- Decrease the level of the generator at the RF input of the module until PER = 1 %.
- · Do the same for other channels.

Results:

Conclusion:

- Minimum value: 103.1 dBm on channel 12
- Maximum value: -102.8 dBm on channel 23

Note:

In RX test, K32W148 is not able to receive all packages when set interval time < 1.6 ms between two packets. Through our calculation, in below and 832 μ s is OK.

All frames are 20 bytes = 40 bytes + 12 symbols for PHY header = 52 symbols.

Time delta between two 20 bytes frames is 832 μ s = 52 symbols.

Time delta = SFD2 - SFD1 = [4 bytes preamble, 1 byte SFD] of frame2 + [IFS] + [length + PHY payload] of frame 1 = 10 symbols + IFS + 42 symbols = 52 symbols + IFS = 0

AN13728

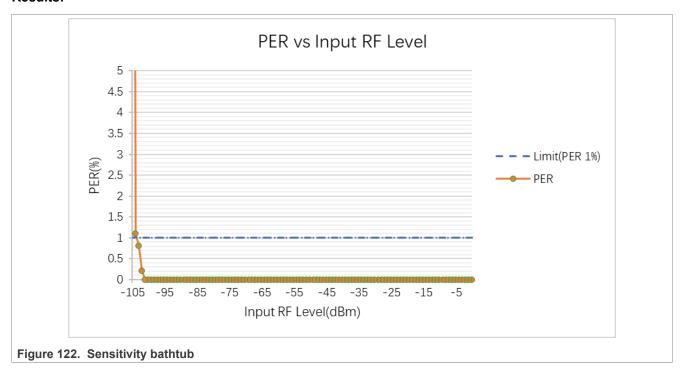
All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.2.3 RX sensitivity bathtub

Test method:

To avoid any interference, place the carrier board and K32W148 module in an RF shield room.


Generator: Keysight N5182B

The generator is used in ARB mode. It generates a pattern of 1000 packets of 20 octets. The DIO19 of the K32W148 is connected to the trigger input of the generator.

A TERATERM window is used to control the module.

- Set the receive frequency to Channel 11.
- · Set the module in Trigger packet test.
- The connection is automatically established and the PER is measured.
- Decrease the level of the generator at the RF input of the module until PER = 1 %.

Results:

4.3.2.4 Receiver maximum input level

Test method:

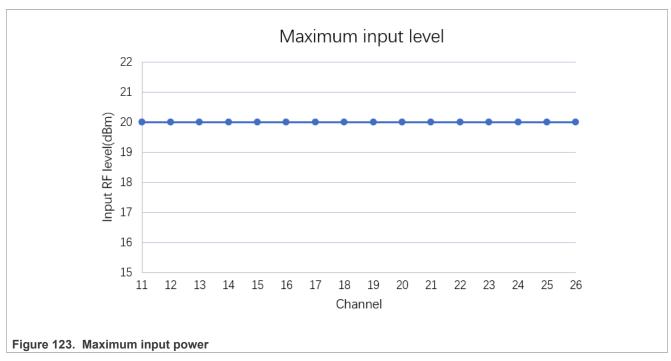
Generator: Keysight N5182B

The generator is used in ARB mode. It generates a pattern of 1000 packets of 20 octets. The DIO19 of the K32W148 is connected to the trigger input of the generator.

A TERATERM window is used to control the module.

- Set the receive frequency to channel 11.
- · Set the module in Trigger packet test.
- The connection is automatically established and the PER is measured.
- Decrease the level of the generator at the RF input of the module until PER = 1 %.

AN13728


Application note

All information provided in this document is subject to legal disclaimers

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

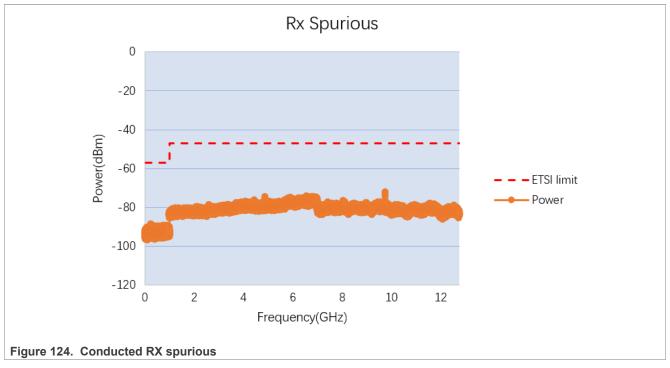
· Do the same for other channels.

Results:

Conclusion:

The actual maximum input level cannot be measured with the test environment. The maximum level that can be delivered to the K32W148 is limited by the maximum output power of the generator.

The maximum input level of K32W148 is higher than 20 dBm on all channels.


4.3.2.5 RX spurious

Test method:

- · Set the radio to:
 - Receiver mode
 - Frequency: Channel 18
- · Set the analyzer to:
 - Ref amp = 20 dBm
 - Trace = max hold
 - Detector = max peak
 - Start/stop frequency: 30 MHz/1 GHz
 - RBW = 100 kHz
 - Start/stop frequency: 1 GHz/12.75 GHz
 - **–** RBW = 1 MHz

Results:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Note: No spurious has been detected.

4.3.2.6 Receiver interference rejection

4.3.2.6.1 Adjacent and alternate channels with standard interferers

Interferers are located in the adjacent channel (n-1 and n+1) or alternate channels (n-2 and n+2).

The test is performed with only one interfering signal at a time.

Test method:

Generator for desired signal: Keysight N5182B generator (modulated)

Generator for interferers: Keysight E8267D (modulated)

Criterion: PER < 1 %

The expected signal is set to - 82 dBm. The interferer is increased until the PER threshold has been reached.

Channels under test: 11, 18, and 26 (although n-1, n-2 are not system relevant for channel 11 and n+, n+2 are not system relevant for channel 26).

Results:

Table 36. Adjacent and alternate rejection

	2405			2440			2480					
	n-2	n-1	n+1	n+2	n-2	n-1	n+1	n+2	n-2	n-1	n+1	n+2
	2395	2400	2410	2415	2430	2435	2445	2450	2470	2475	2485	2490
interfere (dBm)	-35	-45	-45	-36	-36	-45	-45	-35	-36	-45	-45	-36
Interfere (dBc)	47	37	37	46	46	37	37	47	46	37	37	46

AN13728

All information provided in this document is subject to legal disclaimers

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Table 36. Adjacent and alternate rejection...continued

802.15.4 limit	30	0	0	30	30	0	0	30	30	0	0	30
Margin	17	37	37	16	16	37	37	17	16	37	37	16

Conclusion:

Good margin, in line with the expected results.

4.3.2.6.2 N-3 and n+3 channels with standard interferers

Test method:

Similar as for the adjacent and alternate channels but the interferer is set at +/- 15 MHz offset from the desired channel.

Results:

Table 37. N-/+3 band rejection

	2405		24	40	2480	
	n-3 n+3		n-3	n+3	n-3 n+3	
	2400	2405	2425	2455	2465	2495
Interfere (dBm)	-31	-31	-31	-31	-31	-31
Interfere (dBc)	51	51	51	51	51	51

Conclusion:

In line with expected values.

4.3.2.6.3 Co-channel

Results:

Table 38. Co-channel

	2405	2440	2480
expected	-82	-82	-82
interfere (dBm)	-85	-86	-85
interfere (dBm)	-3	-4	-3

Table 39. Co-channel with worst case

	2405	2440	2480
expected (sensi + 3 dB)	-100	-100	-100
interfere (dBm)	-104	-104	-103
interfere (dBm)	-4	-4	-3

Conclusion:

In line with expected values.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

4.3.2.7 Receiver blocking

The K32W148 is the equipment of category 1 as defined by the ETSI 300 328 (TX signal higher than 10 dBm). Tests and limits are used according to category 1.

Interferer is a CW signal.

4.3.2.7.1 Test 1

Results:

	ch11	ch11	ch26	ch26
	2405	2405	2480	2480
	Low	High	Low	High
	2380	2504	2380	2504
interferer level(dBm)	3.7	5.8	5.5	3.3
interferer level(dBc)	72.9	75	74.7	72.5
802.15.4 limit(dBm)	-34	-34	-34	-34
Margin(dB)	37.7	39.8	39.5	37.3

Figure 125. Receiver blocking test 1

Conclusion:

Very good margin.

4.3.2.7.2 Test 2

Results:

	ch11	ch11	ch11	ch26	ch26	ch26
	2405	2405	2405	2480	2480	2480
	Low	Low	Low	Low	Low	Low
	2300	2330	2360	2300	2330	2360
interferer level(dBm)	0.2	-0.5	0.5	0	0	-0.2
interferer level(dBc)	79	78	77	79	77	78
802.15.4 limit(dBm)	-34	-34	-34	-34	-34	-34
Margin(dB)	34.2	33.5	34.5	34	34	33.8

Figure 126. Receiver blocking test 2

Conclusion:

Very good margin.

4.3.2.7.3 Test 3

Results:

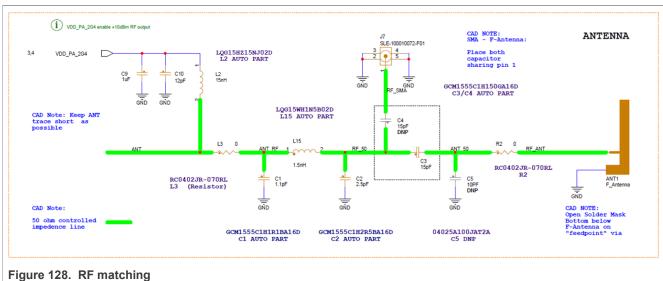
All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

	ch11	ch11	ch11	ch11	ch11	ch11
	2405	2405	2405	2405	2405	2405
	High	High	High	High	High	High
	2524	2554	2584	2614	2644	2674
interferer level(dBm)	0.3	0.3	0.7	1	0.8	1
interferer level(dBc)	77	77	78	78	78	78
802.15.4 limit(dBm)	-34	-34	-34	-34	-34	-34
Margin(dB)	34.3	34.3	34.7	35	34.8	35

	ch26	ch26	ch26	ch26	ch26	ch26
	2480	2480	2480	2480	2480	2480
	High	High	High	High	High	High
	2524	2554	2584	2614	2644	2674
interferer level(dBm)	-0.7	0	0.1	0.5	0.5	0.6
interferer level(dBc)	76	77	77	77	77	77
802.15.4 limit(dBm)	-34	-34	-34	-34	-34	-34
Margin(dB)	33.3	34	34.1	34.5	34.5	34.6

Figure 127. Receiver blocking test 3


Conclusion:

Very good margin.

Return loss

5.1 RF path with matching components using VDD_PA_2G4 pin.

Measurements are done using the SMA connector. Therefore, the C4 capacitor is mounted and the C3 capacitor is not mounted.

All information provided in this document is subject to legal disclaimers.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

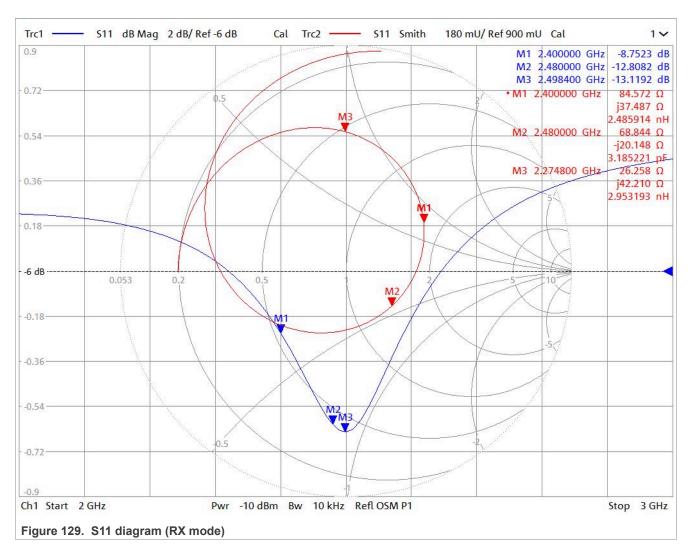
Matching components are:

• Inductors

Reference	Value	Description	Mfr. name	Mfr. part number
L2	15 nH	IND 0.015 µH @ 100 MHz 450 mA +/-5% 0402	MURATA	LQG15HZ15NJ02D
L3	0 ohm	Resistor shunt	_	_
L15	1.5 nH	IND 0.0015 µH @ 100 MHz 1000 mA +/-0.1 nH 0402	MURATA	LQG15WH1N5B02

· Capacitors

Reference	Value	Description	Mfr. name	Mfr. part number
C2	2.5 pF	CAP CER 2.5 pF 50 V 0.1 pF C0G 0402	MURATA	GCM1555C1 H2R5BA16
C1	1.1 pF	CAP CER 1.1 pF 50 V 0.1 pF C0G 0402	MURATA	GCM1555C1 H1R1BA16
C10	12 pF	CAP CER 12 pF 50 V 5 % C0G AEC-Q200 0402	MURATA	GCM1555C1 H120JA16D
C9	1 µF	CAP CER 1 µF 10 V 10 % X7S AEC-Q200 0402	MURATA	GCM155C71 A105KE38D


Note: C3 value populated on the X-K32W1-EVK is 15 pF. To improve the IFA antenna matching, the preferred value is 1.5 pF.

5.2 RX

In the RC mode, the return loss measurement is performed by setting the LNA gain of K32W148 to the maximum.

Hardware: X-K32W148-EVK

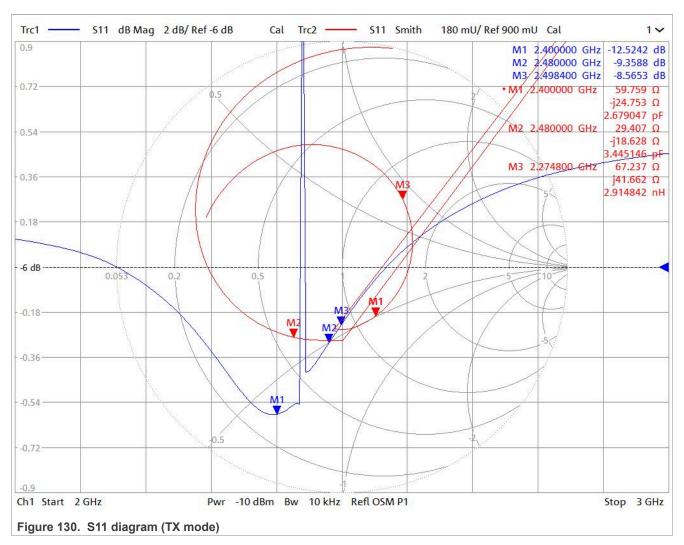
K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Results:

• Return loss: -12.8 dB (2.48 GHz) < S11 < -8.7 dB (2.4 GHz)

There is no specification for the return loss.

Conclusion:


• The return loss (S11) is lower than -8 dB.

5.3 TX

In the TX mode, the return loss measurement is performed by setting the K32W148 RF output power to the minimum.

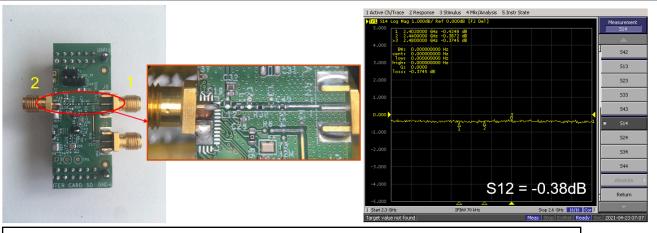
Hardware: K32W148 EVK

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Results:

• Return loss: -12.5 dBm (2.4 GHz) < S11 < -9.3 dB (2.48 GHz)

There is no specification for the return loss.


Conclusion:

• The return loss (S11) is lower than -9 dB.

5.4 RF line insertion loss

To extract RF line insertion loss, we have cut the board and solder SMA on Pin ANT_2P4GHZ to isolate the RF line. Remove default component matching and replace by 0 Ω resistor.

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

This measure does not represent only RF line insertion losses but:

Global losses = insertion losses + Mismatch losses

Figure 131. RF line insertion loss

Insertion losses =
$$\frac{1}{1-|S11|^2} X |S12|^2$$
 (1)

Thanks to Equation 1, we can quantify insertion losses and mismatch losses.

 $Mismatch\ losses = -10\ x \log(1 - \Gamma?2)$

$$\Gamma = 10^{-15.3/20} = 0.171791$$

Mismatch losses = $-10\log (1 - 0.171791?2) = -0.13 dB$

Insertion losses = Global losses - Mismatch losses

Insertion losses = -0.38-(-0.13)

Insertion losses = $-0.25 \, dB$

In additional to insertion line losses, we should add SMD insertion losses estimate at 0.1 dB.

6 Conclusion

Beyond the RED, FCC, Bluetooth LE 5.0, and 802.15.4 compliance, these radio tests prove a good performance of the K32W1 wireless MCUs.

7 Connectivity test tool settings

This application note presents the connectivity test tools settings for the tests.

· For test in transmit modes:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

```
₽ COM58 - PuTTY
                                                                                                                                                                                                                                                                                                                   Press enter to start
₽ COM58 - PuTTY
            Continuous Test Menu
     Press [1] Idle
Press [2] Burst PRBS Transmission using packet mode
Press [3] Continuous Modulated Transmission
Press [4] Continuous Unmodulated Transmission
Press [5] Continuous Reception
Press [6] Continuous Energy Detect
Press [7] Continuous Scan
Press [8] Continuous Coa
      ress [8] Continuous Cca
ress [p] Previous Menu
      w Running: Continuous Tx Modulated - PN9
Putty
                                                                                                                                                                                                                                                                                                                  Press [s] for Power down

-Press [d] to increase the XTAL Trim value

-Press [d] to increase the XTAL Trim value

-Press [n] to decrease the XTAL Trim value

-Press [n] to increase the Payload

-Press [m] to decrease the Payload

-Press [n] to decrease CCA Threshold in Carrier Sense Test

-Press [n] to decrease CCA Threshold in Carrier Sense Test

-Press [n] to toggle Acknoledgement (None/Ack/EnhAck)

-Press [n] to toggle Acknoledgement (None/Ack/EnhAck)

-Press [n] to change the source address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

-Press [c] to change the destination address for the packets

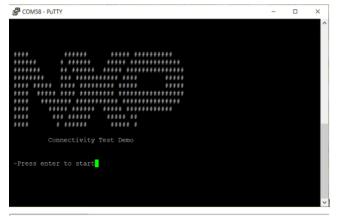
-Press [c] to change the destination address for the packets

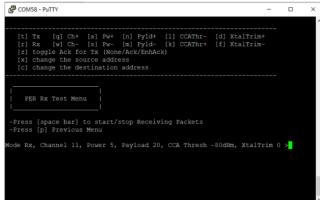
-Press [c] to change the destination address for the packets
     Press [1] Continuous tests

Press [2] Packet Brror Rate test

Press [3] Range test

Press [4] Carrier Sense and Transmission Control menu


Press [5] Trigger Packet test


Press [5] Reset MCU
                                                       nel 11, Power 5, Payload 20, CCA Thresh -80dBm, XtalTrim 0 >
```

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Chapter	CMET selection
Section 3.3.1.2	1) 4)
Section 4.3.1.3	1) 4)
Section 3.3.1.4	1) 3) 2)+/-
Section 3.3.1.6	1) 3) 2)
Section 4.3.1.7	1) 3) 2)
Section 4.3.1.7.1	1) 3) 2
Section 4.3.1.7.2	1) 4)
Section 3.3.1.8	1) 3) ch26
Tx return loss	1) 3) 2)

• For PER test:

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Chapter	CMET selection
Section 4.3.2.2	5) bar)+/-
Section 4.3.2.3	5) bar)
Section 4.3.2.4	5) bar)+/-
Section 4.3.2.5	5) bar)
Section 4.3.2.6	5) bar)+/-
Section 4.3.2.7	5) bar)+/-
Section 5.2	

A signal generator sends packets to the K32W148 device.

Then, packets received by K32W148 are counted about 6 seconds and the test is done.

Packets received out to sent packets is calculated and displayed.

8 References

- FCC: 47 CFR Part 15C
- RED: European Radio Equipment Directive applied from June 2016
- R&TTE: Radio and Telecommunications Terminal Equipment Directive (R&TTED) (1999/5/EC) was stopped on June 2016

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

- ETSI EN 300 328 v2.2.2: European Telecommunication Standard Radio Equipment and Systems (RES)
 Wideband data transmission systems, Technical characteristics, and test conditions for data transmission equipment operating in the 2.4 GHz ISM band and using spread spectrum modulation techniques
- IEEE 802.15.4: IEEE standard for Information technology Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personnel Area Networks (LR-WPANs)
- ETS EN 300 328: European Telecommunication Standard—Radio Equipment and Systems (RES) Wideband data transmission systems, Technical characteristics, and test conditions for data transmission equipment operating in the 2.4-GHz ISM band and using spread spectrum modulation techniques.
- RF-PHY TS 4.2.0/5.0: Bluetooth Test Specification. This document defines test structures and procedures for qualification testing of Bluetooth implementations of the Bluetooth Low Energy RF PHY.
- FCC Part 15: Operation to FCC Part 15 is subject to two conditions.
 - The device may not cause harmful interference.
 - The device must accept any interference received, including interference that may cause undesired operation.

Hence, there is no guaranteed quality of service when operating a Part 15 device.

9 Revision history

Rev.	Date	Description
0	5 September 2022	Initial release
1	27 March 2023	Removed the KW45-related description

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

10 Legal information

10.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

10.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

 $\ensuremath{\mathsf{NXP}}$ — wordmark and logo are trademarks of NXP B.V.

AN13728

K32W1 RF System Evaluation Report for Bluetooth Low Energy and 802.15.4 Applications

Contents

1	Introduction	2
2	Software and list of equipment	3
2.1	List of equipment for Bluetooth	3
2.2	List of equipment for 802.15.4	4
3	Bluetooth LE application	
3.1	List of tests	
3.2	Test summary	
3.3	Conducted tests	
3.3.1	TX tests	
3.3.1.1	Test setup	
3.3.1.2	Frequency accuracy	
3.3.1.3	Phase noise	
3.3.1.4	TX power (fundamental)	
3.3.1.5	TX power in-band	
3.3.1.6	TX spurious	
3.3.1.7	Lower band edge – MIIT China	34
3.3.1.8	Upper band edge – MIIT China	35
3.3.1.9	Upper band edge (FCC ANSI C63.10,	
	558074 D01 DTS)	36
3.3.1.10		
	5.4.8.2.1)	38
3.3.1.11	Out of band (ARIB STD T-66)	
3.3.1.12		
3.3.1.13		
3.3.1.14		
3.3.1.15		
3.3.2	RX tests	
3.3.2.1	Test set up – Bluetooth LE	
3.3.2.2	Sensitivity	
3.3.2.3	Receiver maximum input level	
3.3.2.4	RX spurious	
3.3.2.5	Interferer results in Bluetooth	
4	802.15.4 application	
4.1	Test presentation	
4.1.1	List of tests	
4.2	Test summary	
4.3	Conducted tests	
4.3.1	TX tests	
4.3.1.1	Test setup	
4.3.1.2	Frequency accuracy	
4.3.1.3	Phase noise @ 100 kHz offset	85
4.3.1.4	TX power (fundamental)	
4.3.1.5	TX power in-band	
4.3.1.6	TX spurious	
4.3.1.7	TX modulation	
4.3.1.8	Lower band edge – MIIT China	109
4.3.1.9	Upper band edge – MIIT China	110
4.3.1.10		
	558074 D01 DTS)	111
4.3.1.11	Out of band (ETSI 300 328 chapter	
	5.4.8.2.1)	113
4.3.1.12	*	
432	RX tests	117

4.3.2.1	rest setup	118
4.3.2.2	RX sensitivity	118
4.3.2.3	RX sensitivity bathtub	120
4.3.2.4	Receiver maximum input level	120
4.3.2.5	RX spurious	121
4.3.2.6	Receiver interference rejection	122
4.3.2.7	Receiver blocking	124
5	Return loss	125
5.1	RF path with matching components using	
	VDD_PA_2G4 pin	125
5.2	RX	126
5.3	TX	127
5.4	RF line insertion loss	
6	Conclusion	129
7	Connectivity test tool settings	129
8	References	132
9	Revision history	133
10	Legal information	134

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.