
Using Synchronous Audio Interface (SAI)

on S32K148
by: NXP Semiconductors

1. Introduction

The Synchronous Audio Interface (SAI) module found

in S32K148 device is targeted to be used in

different applications in which audio processing is

required. This module is highly-configurable and allows

users to process audio in different audio format such as

I2S, Codec/DSP and TDM.

This application note is focused on providing an overview,

module explanation and use-case implementation in

different audio formats for SAI module.

2. Audio bus topology

The audio bus (either for I2S, Codec/DSP modes, TDM,

etc.) was designed to minimize the number of pins

required and to keep wiring simple. A 3-line serial bus

is used consisting of one serial data line, one

channel/word selection and one clock line. Since the

transmitter and receiver have the same clock signal for

data transmission, there are two different roles involved:

Master and Slave.

Device either transmitter or receiver in charge to

provide clock and word select lines is defined as Master,

there must only be one master in the bus no matter if

several transmitters and receivers are connected. The

rest of devices connected to the bus are named as slaves.

Following image depicts these master and slave roles on

common audio bus connections.

NXP Semiconductors Document Number: AN12202

Application Notes Rev. 0 , 11/2018

Contents

1. Introduction .. 1

2. Audio Bus Topology .. 1

3. Audio Formats ... 2

3.1. Inter-IC Sound (I2S) ... 2

3.2. Codec mode (Left/Right-Justified) 3

3.3. DSP mode ... 4

3.4. Time-Division Multiplexed (TDM) 5

3.5. PCM .. 5

4. SAI module overview .. 6

4.1. SAI architecture .. 6

4.2. SAI clocking ... 7

4.3. Synchronous modes .. 9

4.4. SAI configuration fields .. 9

4.5. SAI FIFO and DMA/Interrupt generation 10

4.6. Masking SAI channels .. 12

4.7. SAI initialization procedure 12

5. SAI configuration for different audio formats 14

6. Use Cases ... 14

6.1. Ping pong buffer channel processing (left and right

channels in same buffer) ... 15

6.2. SAI receiver splitting Left and Right channels in

separate buffers ... 15

7. SAI driver in SDK. .. 17

8. References .. 17

9. Revision History .. 17

Appendix A. Figures ... 18

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

Audio formats

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

2 NXP Semiconductors

Figure 1. Master and Slaves roles within an audio bus connection

3. Audio formats

Before reviewing SAI module and its features, it is important to understand different audio formats and

concepts related to digital audio signals. Although some audio ICs/Codec might have different names

for some audio formats presented in this section, it is important to identify each format based on its

characteristics rather than its name.

3.1. Inter-IC Sound (I2S)

A serial protocol (I2S) specially for digital audio applications was developed to standardized

communication between IC manufacturer and audio processing units. The I2S bus has three lines:

• Continuous Serial clock (SCK), Bit Clock (BCLK)

• Word Select (WS), Frame Sync (FS), Word Clock (WCLK), Left-Right Clock (LRCLK)

• Serial Data (SD), Serial Data Out/In (SDOUT, SDIN)

Serial clock (SCK) also known as bit clock (BCLK) is the line used to provide clock reference for each

audio bit. Word Select (WS), Frame Sync (FS) or Word clock (WCLK) indicates the channel being

transmitted: when this line is set to ‘0’, channel 1 (left) is being transmitted, while when this line is set to

‘1’, channel 2 (right) is transmitted. WS line changes one clock period before the MSB is transmitted.

The frequency of this line corresponds to the Audio sample rate frequency. Serial data (SD) is

transmitted in two’s complement with MSB first always (as both transmitter and receiver may have

different word lengths). Data range from 8 to 32-bit. The figure below shows the diagram for I2S

format.

Audio formats

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 3

Figure 2. I2S diagram

3.2. Codec mode (Left/Right justified)

Codec mode can be compared with I2S protocol but Word Select is asserted at the same time that first

bit is transmitted for current frame (it is not delayed one bit clock as in I2S). Also, channel selection by

Word Select signal is inverted in comparison with I2S: when Word Select is set to ‘0’, right channel is

transmitted and when it is set to ‘1’, left channel is transmitted.

There are two variants explained below.

3.2.1. Left-Justified (MSB justified)

For Left-Justified also known as MSB justified, the Word Select changes when the MSB bit for current

frame is available. Serial data is justified to the left, which means that if Word Select’s half period is 32-

bit long and only 24 bits are used for audio data, the first 24 bits will be used for audio and the

remaining 8 bits must be set to zero.

The figure below depicts Left-Justified format.

Figure 3. Left-Justified format

3.2.2. Right-Justified (LSB justified)

For Right-Justified also known as LSB justified, the Word Select changes when the first bit for current

frame is available. Serial data is justified to the right, which means that if Word Select’s half period is

32-bit long and only 24 bits are used for audio data, the first 8 bits must be set to zero while remaining

Audio formats

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

4 NXP Semiconductors

24 bits will be used for audio data. As serial data is transmitted in MSB format, LSB bit matches with

last bit clock cycle before WS changes its state.

The figure below depicts Right-Justified format.

Figure 4. Right-Justified format

3.3. DSP mode

DSP mode is similar to Left-Justified Codec format but Word Select’s width may vary depending on IC

architecture (minimum allowed value is 1 bit clock). As Word Select signal is not a 50% duty cycle

signal, the rising edge of the Word Select signals the beginning of audio data with the left channel data

first followed by right channel data immediately. Word Select’s frequency still defines the audio sample

rate.

Figure 5. DSP format

There are some DSP mode connections in which, data is delayed one bit clock as in I2S format. The

following figure illustrate this DSP connection where Word Select width is only 1 bit clock long.

Figure 6. DSP mode with serial data delayed one bit clock

Audio formats

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 5

NOTE
Some ICs might require zero-forced data between each left and right channel instead of leaving this

to the end. It is important to understand ICs’ requirements from device’s datasheet.

3.4. Time-Division Multiplexed (TDM)

For previous audio formats, only 2 channels can be sent in a single Word-Select period, however, for

TDM format, sending more than 2 channels in same Word-Select period is possible. In TDM format,

Word Select’s width is only 1 bit clock long.

TDM mode is usually used when more than one slave is connected to the bus, in which, master sends

data for all slaves using same synchronization (word-select) line. Every slave is configured to use their

own channel by setting an “offset” since the Word-Select’s assertion to the channel that corresponds to

each slave.

3.5. PCM

In Pulse Code Modulation (PCM), only one channel is transferred. There are two types of

synchronization modes: short frame and long frame. For short frame synchronization mode, the falling

edge of the Word Select / Frame Sync indicates the start of the serial data. Word Select/Frame Sync is

always one clock cycle long. For long frame synchronization mode, the rising edge of the Word

Select/Frame Sync indicates the start of the serial data. Word Select / Frame Sync stays active high for

13 clock cycles. Figure below shows PCM formats for both synchronization modes.

Figure 7. PCM format for both short and long synchronization modes

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

6 NXP Semiconductors

4. SAI module overview

As Synchronous Audio Interface (SAI) supports full-duplex serial interface and several audio protocols

such as I2S, AC97, TDM and codec/DSP interfaces, this section is focused on providing a brief

explanation on SAI features/components and how to configure them for different audio formats.

SAI’s lines are identified as BCLK, SYNC and Dn for clock line, word select/frame sync line and data

lines respectively.

For detailed information on SAI module architecture, see SAI’s chapter in device’s Reference Manual.

4.1. SAI architecture

SAI module in S32K148 includes logic for both transmitter and receiver independently. Each logic

includes FIFO support of 8 words (32 bits each) with DMA support to efficiently improve audio

processing performance. There are two SAI instances in S32K148: SAI0 and SAI1, SAI0 has support

for 4 data lines while SAI1 has support for only one data line.

The figure shows SAI’s block diagram.

Figure 8. SAI block diagram on S32K148

As communication lines are connected together for both transmitter and receiver, only one can be

enabled at a time. Be aware that registers for transmitter and receiver are independent between each

other, so a register will be called as SAI_xCRn to refer to either SAI_TCRn or SAI_RCRn respectively.

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 7

4.2. SAI clocking

Before accessing to any SAI register, it is necessary to enable module clock in PCC_SAIx register for

both master and slave configurations.

4.2.1. Clock configuration as master

When SAI is configured as Master (SAI_xCR4[FSD]=1 and SAI_xCR2[BCD]=1), BCLK and SYNC

signals will be generated internally based on clock source reference and divider configuration fields. In

S2K148, SAI can use up to four different clock sources: its module clock (Bus Clock), its external

MCLK clock, frequency from System Oscillator Clock Divider 1 (SOSCDIV1) and the external MCLK

clock from the opposite SAI instance. The figure below shows these clock options.

Figure 9. SAI clock source options

NOTE

SAIx_MCLK refers to MCLK pin for that specific instance while SAIy_MCLK refers to MCLK pin

for the other instance.

Once MCLK_SAI is selected, this clock is used to calculate the Bit Clock frequency as shown below:

Where DIV is an 8-bit field from SAIx_TCR2 or SAIx_RCR2 depending if transmitter or receiver is

configured.

As common audio frequency is based on frame Sync (sample rate) frequency, bit clock can be calculated

from sample rate as follows:

So, DIV field can be calculated from sample rate frequency as shown below:

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

8 NXP Semiconductors

For example, for I2S format, number of channels is 2 (left and right), bits per channel is 32 and sample

rate can be: 8 kHz, 11.025 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, 48 kHz or 96 kHz. Assuming

that MCLK_SAI clock is derived from bus clock (SAI_xCR2[MSEL] = 0) and bus clock has been

configured to 40 MHz, then DIV value is:

Following table shows different DIV values for some of the main sample rate values.

Table 1. Sample Rate and DIV values

Sample Rate

(kHz)

Exact

DIV value

Closet DIV

value

Resulting BCLK

frequency (MHz)

(SAI clock as 40Mhz)

Real Sample Rate

(BCLK / 64) in KHz

8 38.06 38 0.512 8.012

11.025 27.34 27 0.714 11.16

16 18.53 18 1.052 16.447

22.05 13.17 13 1.428 22.321

32 8.76 9 2.222 34.722

44.1 6.08 6 2.857 44.642

48 5.51 5 3.333 52.08

96 2.25 2 6.666 104.166

In order to get more accurate sample rate frequencies, it is recommended to use MCLK clock with

standard master clock values. For example, if MCLK is set to 24.576 MHz, more accurate DIV values

are obtained for 8, 16, 32, 48 and 96 kHz as shown below:

Table 2. Sample Rate and DIV values when MCLK is 24.576MHz

Sample Rate

(kHz)
DIV value Resulting BCLK frequency (MHz)

8 23 0.512

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 9

Sample Rate

(kHz)
DIV value Resulting BCLK frequency (MHz)

11.025 16.41497 0.7056

16 11 1.024

22.05 7.707483 1.4112

32 5 2.048

44.1 3.353741 2.8224

48 3 3.072

96 1 6.144

4.2.2. Clock configuration as slave

When SAI is configured as Slave (SAI_xCR4[FSD]=0 and SAI_xCR2[BCD]=0), as BCLK and SYNC

will be generated externally by master, there is no need to configure SAI_xCR2[MSEL] and

SAI_xCR2[DIV] values.

4.3. Synchronous modes

SAI module can be configured to operate using two different synchronization modes:

• Synchronous Mode: SAI transmitter and receiver can be configured to operate with synchronous

bit clock and frame sync and controlled by the same module enabled. (Both transmitter and

receiver operate using same SAI lines)

• Asynchronous mode: SAI transmitter or receiver can be configured to operate asynchronously

between each other.

Although SAI module implementation in S32K148 do not allow to operate both transmitter and receiver

of same instance simultaneously (due most lines are already shared between transmitter and receiver), it

is recommended that synchronous mode is set in either transmitter or receiver registers (TCR2[SYNC]

or RCR2[SYNC] respectively) in order to correctly generate the SAI’s internal bit clock when it is

configured as master.

4.4. SAI configuration fields

SAI module allows to configure some audio settings as shown in figure below.

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

10 NXP Semiconductors

Figure 10. Audio settings and SAI's fields involved

• Clock polarity (SAI_xCR2[BCP]): Clock line can be configured in two different ways depending

on which edge is used for driving the data and which is used for sampling/capturing the data.

• Frame sync early (SAI_xCR4[FSE]): The option to assert one bit-clock the frame sync line with

respect data line is called Frame sync early feature. If Frame sync early features is enabled, then

Frame Sync is asserted one bit clock before the first bit of the current frame. If this feature is

disabled, then Frame sync line will be asserted at the same that first bit of current frame is

available.

• Frame sync polarity (SAI_xCR4[FSP]): This feature configures whether Frame sync is active

high (default) or low.

• Frame sync width (SAI_xCR4[SYWD]): Defined in ‘bit-clock’ numbers, this parameter

establishes how many bit-clocks the frame sync will be active. The value written must be one

less that the number of bit clocks.

• Data bit order (SAI_xCR4[MF]): Although most audio formats required data line to be

configured as MSB, there is an option to change this feature to LSB if needed.

• Slot size (SAI_xCR5[WNW]): Defined in ‘bit-clock’ numbers. This parameter configures the

number of bits in each word. The value written must be one less that the number of bits per

word.

• Slot count (SAI_xCR4[FRSZ]): This feature configures the number of words (also known as

channels) in each audio frame. The value written must be one less than the number of words in

the frame.

• Slot offset: This feature is implemented by shifting data while writing into SAI_TDRn.

Commonly, slot size is affected by shifting data “n” bits to the right/left to align into specific bit

value.

4.5. SAI FIFO and DMA/Interrupt generation

SAI transmit and receive channel include a FIFO of 8 words (32-bit) each. The FIFO data is accessed

using the SAI Transmit/Receive Data registers.

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 11

SAI_TCR1 and SAI_RCR1 registers configure FIFO watermark to be less than or equal to eight if

needed. This FIFO watermark helps user to set a specific value in which, FIFO does not need to get

empty before requesting more audio data to DMA.

There are two different flags used to trigger a DMA requests:

1. FIFO request flag: Signals if current FIFO entries is below/above the watermark configuration

for the transmit FIFO and receive FIFO respectively. It is automatically cleared if number of

entries are above/below the watermark value. The figures below show FIFO request flag values

for transmitter and receiver under certain conditions.

Figure 11. FIFO request flag for transmitter

Figure 12. FIFO request flag for receiver

SAI module overview

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

12 NXP Semiconductors

2. FIFO warning flag: Signals if FIFO is empty (for transmitter) or full (for receiver) and it is

cleared automatically if the condition is removed (if FIFO is no longer empty for transmitter or

full for receiver).

SAI transmitter and receiver generate separate interrupts and separate DMA requests, but support the

same status flags. Section interrupts and DMA requests in device reference manual describes these flags

in depth.

4.5.1. FIFO error handling

Whenever a FIFO error is detected, SAI module will stop transferring data unless SAI_xTCR4[FCONT]

bit is set. In order to continue sending/receiving data, SAI_xCSR[FEF] flag must be cleared.

4.6. Masking SAI channels

SAI module allows user to mask/unmask channels by clearing/setting bits in Transmit Mask Register

(SAIx_TMR) or Receive Mask Register (SAIx_RMR). Each bit from this 16-bit field represents a

channel in the frame. By masking (clearing) the channel bit, the respective channel is sent/received

from/within the SAI’s FIFO. If unmasking (setting) the channel bit, the respective channel is not

considered to be read/written from/to FIFO.

For example, if transmitting audio data in I2S format two channels are required, but in case that only one

of these channels is used (for example left channel), bit 0 (channel 1 - left) should be cleared while bit 1

(channel 2 - right) can be set. After doing this, all data in the transmitter FIFO will contain data for

channel 1(left). If channel 2 is not unmasked, then FIFO will need to stored data for both left and right

channels so user should write zeros to all words corresponding to right channel, so user padding is

needed if channel masking is not set properly.

4.7. SAI initialization procedure

Next section lists all steps needed when configuring SAI module.

1. Turn SAI module’s clock on by setting PCC_SAIx[CGC] bit.

2. Configure SAI_BCLK, SAI_Dn and SAI_SYNC pins functionality in PORTx_PCR registers.

3. Disable Transmitter/Receiver.

4. Reset FIFOs for both transmitter and receiver.

5. Configure synchronous mode for SAI’s transmitter and receiver by setting SAI_xCR2[SYNC]

field.

6. Configure SAI_xCR2, SAI_xCR4, SAI_xCR5 register to meet desired audio format’s

characteristics.

7. Configure Master/Slave mode by setting/clearing SAI_xCR4[FSD] and SAI_xCR2[BCD] bits.

8. If master mode is required, adjust clock settings as explained in SAI clocking section.

9. Mask/Unmasked desired channels in SAI_xMR register.

SAI configuration for different audio formats

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 13

10. Disable SAI data lines by clearing corresponding bits in SAI_xCR3[TCE].

11. In case DMA/interrupts are used, configure FIFOs watermark in SAI_xCR1[TWF].

12. Enable Transmitter/Receiver. After transmitter/receiver is enabled, bit clock and frame sync

signals are generated (if configured as master).

4.7.1. Triggering a SAI transmission/reception operation

If user wants to start a SAI transmission/reception, after SAI module is initialized, user needs to follow

next steps.:

• Using DMA

1. Be sure DMAMUX module is already configured to use SAI’s transmitter/receiver

requests.

2. If SAI is configured as transmitter, write to SAI transmitter FIFOs in order to fill the 8-

entries FIFO. This will lead that transmitter buffer has already data when transmission

starts, otherwise, an underrun error might happen.

3. Be sure DMA’s TCD is configured to move data to/from SAI transmitter/receiver from/to

RAM locations. Depending on SAI configuration (bits per channel, watermark value)

TCD configuration might vary. Consider that for transmitter, eight entries are already

moved from RAM to SAI’s FIFO buffer.

4. Enable DMA requests on SAI’s registers: SAI_xCSR[FWDE] and/or SAI_xCSR[FRDE].

5. Enable used channels in SAI_xCR3[TCE].

• Using Interrupts.

1. Be sure SAI interrupt is already enabled in NVIC.

2. If SAI is configured as transmitter, write to SAI transmitter FIFOs in order to fill the

eight entries FIFO. This will lead that transmitter buffer has already data when

transmission starts, otherwise, an underrun error might happen.

3. Enable interrupt request on SAI’s registers: SAI_xCSR[FWIE] and/or SAI_xCSR[FRIE].

4. Enable used channels in SAI_xCR3[TCE].

4.7.2. Pausing/Stopping SAI transfers

In case user is moving data by DMA/Interrupt and transfer is intended to be paused/stopped, user should

perform steps listed below to avoid a FIFO error event.

1. Disable DMA request / Interrupt generation by clearing SAI_xCSR[FWDE] and/or

SAI_xCSR[FRDE] or SAI_xCSR[FWIE] and/or SAI_xCSR[FRIE] respectively.

2. Wait until SAI_xCSR[FWF] is set signaling that FIFO is empty.

3. Disable all used channels by clearing corresponding bits in SAI_xCR3[TCE].

4. In case that transfer is intended to be stopped, reset FIFO pointers by setting SAI_xCSR[FR].

Use cases

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

14 NXP Semiconductors

5. SAI configuration for different audio formats

Table below shows different configuration fields according some audio formats. Some other

configuration fields not listed below might vary depending on codec architecture. Data bits represents

how many bits represent an audio frame, while Slot Size indicates how many bits are included in each

channel. Example consider that SAI clock is taken from Bus clock (40MHz) and desired sample rate is

48kHz.

Table 3. SAI configuration fields for different audio formats

Audio
Form
at

Dat
a

bits

Frame
Sync
Early

SAI_xC
R4[FSE]

Frame
Sync
Width

SAI_xCR
4[SYWD]

Slot Offset
(SAI_xDRn)]

Slot
Size

SAI_xCR
5[WNW]

Slot
count
SAI_xC
R4[FRS

Z]

Bit
Clock
divider
(SAI_xC
R2[DIV])

Channel
Mask

SAI_xMR[x
WM]

Diagram

I2S

32 1 31 Data[31:0] 31 1 6 0xFFFC Figure A. I2S 32bit format

24 1 31
(Data[23:0]

<< 8) &
0xFFFFFF00

31 1 6 0xFFFC Figure B. I2S 24bit format

16 1 31
(Data[15:0]

<< 16) &
0xFFFF0000

31 1 6 0xFFFC Figure C. I2S 16bit format

Right
-

Justifi
ed

32 0 31 Data[31:0] 31 1 6 0xFFFC
Figure D. Left-Justified

32bit / Right-Justified 32bit
formats

24 0 31
Data[23:0] &
0x00FFFFFF

31 1 6 0xFFFC
Figure H. Right-Justified

24bit format

16 0 31
Data[15:0] &
0x0000FFFF

31 1 6 0xFFFC
Figure I. Right-Justified

16bit format

Left-
Justifi

ed

32 0 31 Data[31:0] 31 1 6 0xFFFC
Figure D. Left-Justified

32bit / Right-Justified 32bit
formats

24 0 31
(Data[23:0]

<< 8) &
0xFFFFFF00

31 1 6 0xFFFC
Figure E. Left-Justified

24bit format

16 0 31
(Data[15:0]

<< 16) &
0xFFFF0000

31 1 6 0xFFFC
Figure F. Left-Justified

16bit format

16 0 15
(Data[15:0]

<< 16) &
0xFFFF0000

15 1 12 0xFFFC
Figure G. Left-Justified

16bit format (Slot size is
16)

TDM 32 0 0
(Data[15:0]

<< 16) &
0xFFFF0000

31 7 1 0xFF00
Figure J. TDM, 32bit
format, 8 channels

6. Use cases

When implementing audio processing in embedded systems, it is important to manage audio buffers

properly so no glitches are heard. There are several techniques to do this, the most common is to

implement ping pong buffers that, along with DMA usage, decrease CPU overhead and facilitate audio

processing.

Use cases

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 15

Next section implements this audio processing method using basic example codes for S32K148. I2S in

16-bit mode is used for a 48 kHz sample rate.

NOTE
Although it is specified that 32 bits are used for each channel in I2S mode, 16-bit provides the most

accurate value for desired sample rate using the 40 MHz SAI reference clock.

6.1. Ping pong buffer channel processing (left and right channels in

same buffer)

By using the DMA in scatter gather configuration, the system is able to store audio data in two separated

buffers. The CPU can process the information of buffer 1 while the DMA is transferring data from the

buffer 2. When the transfer is finished, then the DMA will change its source address to start sending data

from the buffer 1 and the CPU will start processing the data from Buffer 2. The figure below shows the

block diagram for this implementation.

Figure 13. Ping Pong buffer implementation

CPU must be able to process all data before the DMA completes the transfer. For this specific use case,

8 words are sent on every DMA transfer, so time needed for DMA to complete the transfer is given by

the following formula:

In order to identify which buffer is free, application compares the source address for current DMA’s

TCD (DMA_TCD[n].SADDR) against the address saved on the first TCD array stored in SRAM.

Example code included in the application note shows the implementation done for this basic use case.

6.2. SAI receiver splitting Left and Right channels in separate buffers

In some audio applications, audio processing should be applied to each channel separately so, for this

case, both receiver and transmitter have separated left and right buffers and the DMA is used to

Use cases

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

16 NXP Semiconductors

send/receive the data from/to the proper buffer. In order to do this, the TCD is configured with especial

offsets on every data transmission and at the end of every request.

DMA configuration plays a role to get ordered data properly. The following figure shows how the

offsets are configured.

Figure 14. DMA TCD offset configuration

As TCD is configured to move two SAI words on every request (1, 2 or 4 bytes each depending on SAI

configuration 8-.16- or 32-bits per word), DOFF is applied on every word write, so this offset is

basically the address difference between buffer 1 and buffer 2 (or the buffer size multiplied by the word

width). Minor loop offset is applied once the request is completed (once the two words are moved) so it

returns to the next address for the previous buffer.

This process is repeated “citer” times to get both buffers filled with proper data. Once the MAJOR loop

is completed, minor offset is not applied, so SADDR/DADDR are pointing to the last element on the

“auxiliary buffer”. So, an adjust of (-3 * BUFFSIZE * WORDSIZE + WORDSIZE) is needed.

For this example code, SAI0 will be providing data to SAI1 which is in charge to receive and separate

data.

For SAI1, reception buffers are including 4 more slots per channels as transmitter is sending eight

additional data (four for right channel and four for left channel) as a part of the initialization procedure

and to avoid underflow flag to be set in case the transmitter buffer is enabled with empty FIFO.

Revision History

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 17

Both Transmitter (SAI0) and receiver (SAI1) uses the same DMA logic to move data to/from separate

buffers. Following image shows the data seen on SAI lines and how they are split into 2 buffers when

these is received.

7. SAI driver in SDK.

SAI driver is also included in SDK (0.8.6 version). There is a similar example code as the one shown in

6.2.

You can check SDK documentation for more information about the APIs used to configure SAI module.

8. References

https://www.keil.com/pack/doc/CMSIS/Driver/html/group__sai__interface__gr.html

9. Revision History

Version Number Revision Date Description of changes

Rev 0 November 2018 Initial release

https://www.keil.com/pack/doc/CMSIS/Driver/html/group__sai__interface__gr.html

Revision History

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

18 NXP Semiconductors

Appendix A. Figures

Figure A. I2S 32bit format

Figure B. I2S 24bit format

Figure C. I2S 16bit format

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex] & 0xFFFFFF00;
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex];
 }

Revision History

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 19

Figure D. Left-Justified 32bit / Right-Justified 32bit formats

Figure E. Left-Justified 24bit format

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex];
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex] & 0xFFFF0000;
 }

Revision History

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0
11/2018

20 NXP Semiconductors

Figure F. Left-Justified 16bit format

Figure G. Left-Justified 16bit format (Slot size is 16)

Figure H. Right-Justified 24bit format

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex] & 0xFFFF0000;
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex] & 0xFFFF0000;
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex] & 0xFFFFFF00;
 }

Revision History

Using Synchronous Audio Interface (SAI) on S32K148Using Synchronous Audio Interface (SAI) on S32K148, Rev. 0,
11/2018

NXP Semiconductors 21

Figure I. Right-Justified 16bit format

Figure J. TDM, 32bit format, 8 channels

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = txBuffer[fifoIndex];
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = (txBuffer[fifoIndex] >> 16) & 0x0000FFFF;
 }

 uint8_t fifoIndex = 0;
 uint32_t txBuffer[8] = {0x12345678, 0x12345678, 0x12345678, 0x12345678,
 0x12345678, 0x12345678, 0x12345678, 0x12345678};
 for (fifoIndex = 0; fifoIndex < 8; fifoIndex++)
 {
 SAI0->TDR[0] = (txBuffer[fifoIndex] >> 8) & 0x00FFFFFF;
 }

Document Number: AN12202
Rev. 0

11/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer's applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Audio bus topology
	3. Audio formats
	3.1. Inter-IC Sound (I2S)
	3.2. Codec mode (Left/Right justified)
	3.2.1. Left-Justified (MSB justified)
	3.2.2. Right-Justified (LSB justified)

	3.3. DSP mode
	3.4. Time-Division Multiplexed (TDM)
	3.5. PCM

	4. SAI module overview
	4.1. SAI architecture
	4.2. SAI clocking
	4.2.1. Clock configuration as master
	4.2.2. Clock configuration as slave

	4.3. Synchronous modes
	4.4. SAI configuration fields
	4.5. SAI FIFO and DMA/Interrupt generation
	4.5.1. FIFO error handling

	4.6. Masking SAI channels
	4.7. SAI initialization procedure
	4.7.1. Triggering a SAI transmission/reception operation
	4.7.2. Pausing/Stopping SAI transfers

	5. SAI configuration for different audio formats
	6. Use cases
	6.1. Ping pong buffer channel processing (left and right channels in same buffer)
	6.2. SAI receiver splitting Left and Right channels in separate buffers

	7. SAI driver in SDK.
	8. References
	9. Revision History
	Figure A. I2S 32bit format
	Figure B. I2S 24bit format
	Figure C. I2S 16bit format
	Figure D. Left-Justified 32bit / Right-Justified 32bit formats
	Figure E. Left-Justified 24bit format
	Figure F. Left-Justified 16bit format
	Figure G. Left-Justified 16bit format (Slot size is 16)
	Figure H. Right-Justified 24bit format
	Figure I. Right-Justified 16bit format
	Figure J. TDM, 32bit format, 8 channels

