

 AN11583
Guide about how to port the Passive Target example from the
NFC Reader Library to another MCU
Rev. 1.0 — 11 August 2014
302310

Application note
COMPANY PUBLIC

03Document information
Info Content
Keywords NFC Reader Library, LPCXpresso, LPC1769, LPC1227, SNEP, NDEF,

PNEV512B, NFC, P2P,

Abstract This document describes a way how to port a software project based on
the NFC Reader Library 3.x from a microcontroller based on an ARM
Cortex-M3 to a simpler microcontroller based on an ARM Cortex-M0. It
also description which software modules are necessary to replace and
which application variables and buffers must be reduced.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

2 of 34

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1.0 20140811 Initial revision

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

3 of 34

1. Introduction
The software project used in this documentation to show the way of porting to another
MCU is the “Passive Target” example for the PN512 NFC reader IC. The way pointed out
here can be applied to any project based on the NFC Reader Library 3.x. No matter
which reader IC is used.

The Passive Target example is the NFC P2P application based on SNEP. The
application runs as either SNEP Server or SNEP Client and it demonstrates NDEF
message transmission using SNEP.

The example has been created to run on NXP microcontroller LPC1769. The
microcontroller is ARM Cortex-M3 core based, providing enough performance and
FLASH and RAM required for hosting the Passive Target application.

The main goal of the document is to show and describe steps of application porting to a
simpler and cheaper microcontroller. LPC1227 microcontroller produced by NXP based
on ARM Cortex-M0 core has been chosen. The microcontroller type LPC1227 delivers
sufficient computational performance and FLASH amount.

The secondary goal of the document is to show main principles of the Passive Target
application, how it works and furthermore to clarify how overwriting some dedicated
configuration parts influences behavior of the application.

In the porting section there are described modifications of selected parts of the
application and MCU drivers which results to LPC1227 is able to host (and run) the
Passive Target application. At the end there are listed some results of practical tests
referring about RAM memory usage by the Passive Target application concluding into
size limit for an NDEF message to be transferred.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

4 of 34

2. Application description

2.1 Overview
2.1.1 SNEP Overview

Simple NDEF Exchange Protocol is a request/response protocol for exchanging NDEF
messages over LLCP. SNEP uses underlying Connection Oriented LLCP link to
exchange data packets with peer device. SNEP uses Connection Oriented LLCP link as
its lower transport. Requests are always sent by the client and responses are sent by
server.[8], [9] [11]. The software application is possible to find at the web site [13].

SNEP API is divided into three categories of functions:

Session Establishment:

This session starts with creating SNEP Server and Client then sends a connect request
from Client to Server. The last action is acceptance of the incoming connection request
by Server.

Data Exchange:

This is the main part of the application. There are PUT and GET requests sent from
Client to Server and responses from Server to Client.

Session Release:

Disconnect is also necessary part of correct protocol performance. Client disconnects
from Server and Server confirms the disconnection and provides any services for the
Client no more until next connection request.

2.1.2 Example Setting Overview
The passive target application example demonstrates transmission of an NDEF message
via SNEP packets. The data transfer capabilities are described in chapters 2.1.3 and
2.1.4.

2.1.2.1 Set Server or Client

Following defines are used to configure application as SNEP Client or SNEP Server.
1 #define SNEP_SERVER /* Enable for Demo application as SNEP Server */
2 #define SNEP_CLIENT /* Enable for Demo application as SNEP Client */

2.1.2.2 SNEP Server Service Name

Following defines are used to set the SNEP Server service name. If the SNEP Client
application and the SNEP server application run at the same time while expected to be
connected and communicate each other, they both must be set to the same service
name.
3 #define DEFAULT_SERVER /* Enable the SNEP Default Server */
4 #define NON_DEFAULT_SERVER /* Enable the SNEP Non-Default Server */

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

5 of 34

Default Server

The name of the default Server service is: urn:nfc:sn:snep and it is defined in [8]

For this service name only PUT request is supported. GET request is not default
supported and usual response is E0h – Not Implemented.

Non Default Server

The name of the non-default Server service is: urn:nfc:xsn:nfc-forum.org:snep-
validation. This name represents the Validation Server. The Validation Server shall
accept Put and Get requests. The behavior is defined in [12]

In our application the SNEP Server behavior is changed as follows. There is Data buffer
where is stored received NDEF message. On receive the GET request from the Client,
the Server sends the message present in the Data buffer encapsulated in response. In
case the Data buffer is empty Server will send the default message in response.

The default message is defined follow:
5 uint8_t Data[] = {'S','N','E','P','D','A','T','A','G','E','T','\0'};

2.1.3 SNEP Server capabilities
Passive Target example set as Server supports following NDEF message types:

1.) short TEXT message (up to 255Bytes)

2.) long TEXT message (from 256 to 1022Bytesnote1)

3.) URI message

These messages shall follow the standard NFC Forum well-known type [10]

NOTE1: the maximal length of received data depends on length of the:
6 uint8_t TransferData[1024] = {0}; /**< Data Inbox Buffer */

It is declared in the Example_Pn512_M3M0_P2P_Target.c source file.

2.1.4 SNEP Client capabilities
Passive Target example set as Client supports following NDEF message types:

1.) RTD type - short TEXT message (up to 255Bytes)

2.) RTD type - long TEXT message (from 256 to 1023Bytes)

3.) RTD type - URI message

These messages shall follow the standard NFC Forum well-known type [see NFCForum-
TS-RTD_1.0 (2006-07-24)]

Range of supported message types could be easily extended by adding following NDEF
types:

4.) RTD type - long TEXT message (more than 1023Bytes, theoretical limit is
FFFFFFFFh Bytes (32bit number), but in real 50kB file is possible transfer)

5.) MIME message format (multimedia data) JPG, JPEG and PNG picture

6.) MIME message format – vCard

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

6 of 34

7.) RTD type - Smart Poster format which combines different RTD types to one
NDEF message.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

7 of 34

2.2 Passive Target Example Overview
This part consists mainly of the flowcharts which provide overview of the Passive Target
Example behavior. The behavior is divided in to three parts.

2.2.1 Main-Loop Overview
Passive Target example – main loop is shown via flowchart in the figure:

Fig 1 - Main-Loop

(1) shadow item is enlarged in the next figures

Fig 1. Main-Loop

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

8 of 34

2.2.2 SNEP Client Overview
SNEP Client example application is shown via flowcharts in the figures:

Fig 2 - Client Discovery-Loop

Fig 3 - SNEP Client Demo

Close LLCP for Client

(1) shadow items are enlarged in the next figures

Fig 2. Client Discovery-Loop

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

9 of 34

Fig 3. SNEP Client Demo

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

10 of 34

Fig 4. Close LLCP for Client

2.2.3 SNEP Server Overview
SNEP Server example application is shown via flowcharts in the figures:

Fig 5 - Server Discovery-Loop

Fig 6 - SNEP Server Demo

Fig 7 - Close LLCP for Server

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

11 of 34

(2) shadow items are enlarged in the next figures

Fig 5. Server Discovery-Loop

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

12 of 34

Fig 6. SNEP Server Demo

Fig 7. Close LLCP for Server

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

13 of 34

2.2.4 Software Structure
At the figure Fig 8 there is described the whole project structure. The structure consists
of 2 libraries and of the application:

- NXP Reader Library (public release of the NFC library)

- LPC1xxx (library supports the microcontroller)

- P2P-PN512-Target (passive target application consists only of main.c file)

Fig 8. Project structure

Project is built from Nxp Reader Library, one of the LPC1xxx library and from application
(main.c file). The Nxp Reader Library supports the SNEP Client/Server application and it
needs to be always included. LPC1xxx library selection depends on used MCU and is
shown in the figure Fig 9 and MCU setting is shown in the figure Fig 10. Source code of
the application and its main() function is placed in the main.c file.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

14 of 34

Fig 9. MCU library selection

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

15 of 34

Fig 10. MCU settings

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

16 of 34

3. Application Porting

3.1 Overview
The Passive Target demo application has been created with an intention to be run on
conjugation of LPCXpresso LPC1769 board revision B [5] with Blueboard PNEV512B
version v1.5 [3]. The LPC1769 is MCU based on Cortex-M3 core.

The target SNEP application can be ported for simpler Cortex-M0 core. This application
note demonstrates porting to LPC1227 MCU, which is placed on LPCXpresso LPC1227
board [6].

The porting requires changes in following modules:
BAL – communication between MCU and reader chip
OSAL – solution of timer and memory management
GPIO – processor I/O pins driving (module dependent on MCU)

The porting requires adding of following modules:
Hardware module – Interrupt handlers and I/O pins configuration

3.1.1 BAL
The Bus Abstraction Layer (BAL) ensures correct communication interface between the
master device and the reader chip [1]. In this case the master is microcontroller MCU.

The original BAL module consists of the generic module and specific modules. MCU
uses the STUB module. This module is designed to complement its own functionality and
it is placed in the NXP Reader Library at following place:

.\NXP-Reader-Library\comps\phbalReg\src\Stub\

The name of the file is: phbalReg_Stub.c.

The main principle how to custom the BAL-STUB module for the typical type of the MCU
is to copy this source file to the STUB part of the LPC1xxx library (see the project
structure at the picture Fig 8). Then add or enlarge the functionality of each required
function inside the module.

The advantage of this change is that it is not necessary to change the names of variables
and structures and functions by themselves.

The Passive Target example has implemented only SPI communication interface.

The source file phbalReg_Stub.c needs to be enhanced of cases to be able to call
functions of the added SPI module.

Example how to port BAL functions

There is the description how to port function - phbalReg_Stub_Exchange() from
LPC1768 library to the LPC1227 library. Changes are marked by underline green lines.

Original function phbalReg_Stub_Exchange() in the LPC1769 library

7 phStatus_t phbalReg_Stub_Exchange(
8 phbalReg_Stub_DataParams_t * pDataParams,
9 uint8_t * pTxBuffer,
10 uint16_t wTxLength,

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

17 of 34

11 uint16_t wRxBufSize,
12 uint8_t * pRxBuffer,
13 uint16_t * pRxLength
14)
15 {
16 uint16_t xferLen;
17 SSP_DATA_SETUP_Type xferConfig;
18
19 xferConfig.length = wTxLength;
20 xferConfig.rx_data = pRxBuffer;
21 xferConfig.tx_data = pTxBuffer;
22
23 if(pDataParams->bHalType == PHBAL_REG_HAL_HW_RC523)
24 {
25 LPC_GPIO0->FIOCLR = 0x00000040;
26 xferLen = SSP_ReadWrite (LPC_SSP1, &xferConfig, SSP_TRANSFER_POLLING);
27 LPC_GPIO0->FIOSET = 0x00000040;
28 }
29 else if(pDataParams->bHalType == PHBAL_REG_HAL_HW_RC663)
30 {
31 LPC_GPIO0->FIOCLR = 0x00000400;
32 xferLen = SSP_ReadWrite (LPC_SSP1, &xferConfig, SSP_TRANSFER_POLLING);
33 LPC_GPIO0->FIOSET = 0x00000400;
34 }
35 else
36 {
37 return PH_ADD_COMPCODE(PH_ERR_INTERNAL_ERROR, PH_COMP_BAL);
38 }
39
40 if (xferLen != wTxLength)
41 {
42 return PH_ADD_COMPCODE(PH_ERR_INTERFACE_ERROR, PH_COMP_BAL);
43 }
44
45 *pRxLength = xferLen;
46
47 return PH_ADD_COMPCODE(PH_ERR_SUCCESS, PH_COMP_BAL);
48 }

Function phbalReg_Stub_Exchange() after porting to LPC1227 library:

49 phStatus_t phbalReg_Stub_Exchange(
50 phbalReg_Stub_DataParams_t * pDataParams,
51 uint8_t * pTxBuffer,
52 uint16_t wTxLength,
53 uint16_t wRxBufSize,
54 uint8_t * pRxBuffer,
55 uint16_t * pRxLength
56)
57 {

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

18 of 34

58 uint16_t xferLen;
59 SSP_DATA_SETUP_Type xferConfig;
60
61 xferConfig.length = wTxLength;
62 xferConfig.rx_data = pRxBuffer;
63 xferConfig.tx_data = pTxBuffer;
64
65 if(pDataParams->bHalType == PHBAL_REG_HAL_HW_RC523)
66 {
67 GPIOSetValue(PORT0, PIN_SSEL, SSEL_ASR); // CS on
68 xferLen = SSP_ReadWrite (LPC_SSP, &xferConfig, SSP_TRANSFER_POLLING);
69 GPIOSetValue(PORT0, PIN_SSEL, SSEL_DEASR); // CS off
70 }
71 else if(pDataParams->bHalType == PHBAL_REG_HAL_HW_RC663)
72 {
73 GPIOSetValue(PORT0, PIN_SSEL, SSEL_ASR); // CS on
74 xferLen = SSP_ReadWrite (LPC_SSP, &xferConfig, SSP_TRANSFER_POLLING);
75 GPIOSetValue(PORT0, PIN_SSEL, SSEL_DEASR); // CS off
76 }
77 else
78 {
79 return PH_ADD_COMPCODE(PH_ERR_INTERNAL_ERROR, PH_COMP_BAL);
80 }
81
82 if (xferLen != wTxLength)
83 {
84 return PH_ADD_COMPCODE(PH_ERR_INTERFACE_ERROR, PH_COMP_BAL);
85 }
86
87 *pRxLength = xferLen;
88
89 return PH_ADD_COMPCODE(PH_ERR_SUCCESS, PH_COMP_BAL);
90 }

3.1.2 OSAL
The Operating System Abstraction Layer (OSAL) supports Timers usage and RAM
(de)allocation [1].

The original OSAL module consists of the generic module and specific modules. MCU
uses the STUB module. This module is designed to complement its own functionality and
it is placed in the NXP Reader Library at following place:

.\NXP-Reader-Library\comps\phOsal\src\Stub\

The name of the file is phOsal_Stub.c.

The main principle how to custom the OSAL-STUB module for the typical type of the
MCU is to copy this source file to the STUB part of the LPC1xxx library (see the project
structure at the picture Fig 8). Then add or enlarge the functionality of each required
function inside the module.

The advantage of this change is that it is not necessary to change the names of variables
and structures and functions by themselves.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

19 of 34

Example how to port OSAL functions

There is the description how to port function phOsal_Stub_Timer_Create() from the
LPC1768 library to the LPC1227 library. Changes are marked by underline green lines.

Original function phOsal_Stub_Timer_Create() in the LPC1769 library

91 phStatus_t phOsal_Stub_Timer_Create(
92 phOsal_Stub_DataParams_t *pDataParams,
93 uint32_t *pTimerId
94)
95 {
96 phOsal_Lpc17xx_Int_Timer_Create(pDataParams, pTimerId);
97
98 if (*pTimerId == -1)
99 {
100 /* No timer found, need to return error */
101 return PH_ADD_COMPCODE(PH_OSAL_ERR_NO_FREE_TIMER, PH_COMP_OSAL);
102 }
103 else
104 {
105 return PH_ADD_COMPCODE(PH_ERR_SUCCESS, PH_COMP_OSAL);
106 }
107 }

Function phOsal_Stub_Timer_Create() after porting to LPC1227 library:

108 phStatus_t phOsal_Stub_Timer_Create(
109 phOsal_Stub_DataParams_t *pDataParams,
110 uint32_t * pTimerId
111)
112 {
113 phOsal_Lpc12xx_Int_Timer_Create(pDataParams, pTimerId);
114
115 if (*pTimerId == -1)
116 {
117 /* No timer found, need to return error */
118 return PH_ADD_COMPCODE(PH_OSAL_ERR_NO_FREE_TIMER, PH_COMP_OSAL);
119 }
120 else
121 {
122 return PH_ADD_COMPCODE(PH_ERR_SUCCESS, PH_COMP_OSAL);
123 }
124 }

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

20 of 34

3.1.3 MCU drivers
Drivers are necessary to support and handle all on chip peripherals of the MCU. Drivers
are part of the CMSIS [14]. For the Passive Target example only three drivers are used:

SPI
GPIO
Timers

3.1.4 Hardware module
Name of this module is phhwConfig. It consists of functions which directly control the
hardware MCU functionalities.

There are interrupt handlers for timers and for handling the interrupt request from reader
chip when data are received.

There is also reset pin setting and interface selection pins setting (both for reader chip
control)

3.1.5 Timers overview
First we have to recognize the “software (system) timer” and the “hardware timer” for
timer name.

Hardware timer:

This is physical realization of the timer. Hardware time is directly on the MCU chip and it
has own control register, clock source, counter register, match registers and clock
prescale register. Hardware timer should be used for system timer realization or it can be
used directly by application.

Software timer:

This is software realization of the timer. Software timer is represents by own Timer_ID,
and expiration time or delay time (and for operation system also timer type). There is also
possibility to execute some system or application function within the timer usage.
Software timer is possible to manage by following commands of the OSAL API for our
Passive Target example:

Create, Delete, Init, Start, Stop, Reset, Execute Callback, Wait.

There are 4 hardware timers in both MCU.

LPC1769 timers:

4x 32 bits hardware timers

LPC1227 timers:

2x 32bits hardware timers

2x 16bits hardware timers.

3.1.6 Usage of the timers
In the OSAL module there is general approach regarding to the timers: each software
timer is represents by one hardware timer only and each hardware timer could provide
one software timer at a certain time.

There are 4 software timers each one corresponding to a separate hardware timer. The
order doesn’t matter for timers with Timer_ID = 0 to 2.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

21 of 34

Passive Target example uses 2 software timers directly for P2P and LLCP layer
establishment. One is used as LTO timer in case the LLCP is activated, the second is
RTOX in case only 18092-DEP layers is activated. The 3rd software timer is free and
could be used for user application like software or hardware timer. The 4th software timer
is assigned by Timer_ID = 4. This one is separated from timers group. It is specially used
to perform time delay represented by the function phOsal_Timer_Wait. Time delay is
used directly in Discovery Loop library part. Time delay may be used in main loop (user
application) part where time delay is required before performing next loop and the
Discovery Loop doesn’t run.

The Table 1 describes timers usage and naming

Table 1. Timers naming and usage

3.1.7 Timers Porting
System_clock is the internal clock frequency set by system registers of the MCU and
the peripherals are controlled by this one.

Porting of 32bits timer to 32bit timers is without necessity of any modification of the
OSAL functions code.

32bits timer is able to perform time counting in the range from 2 us to 89 s for 48MHz
system clock frequency.

16bits timer provides time counting in range from 2 us to 1365 us for 48MHz system
clock frequency.

Porting of 32bits timer to 16bits timer is a problem and has to be handled by time value
range checking and setting the prescaler of the timer. There is different approach in
solution for microsecond timer and millisecond timer.

Microsecond timer: realization is shown at the figure Fig 11. Time value is limited to
1000us.

Millisecond timer: realization is shown at the figure Fig 12. Match register of the timer is
fulfilled by default value which represents 1000us. Timer prescaler is configured to a
value corresponding to one millisecond as one tick at the timer counts register. By this
solution 16bits timer is able to provide time amounts in range from 1ms to 65535 ms.

Timer_ID Timer name
LPC1769

Timer name
LPC1227

Usage

0 Timer0 Timer32_0
LLCP, 18092
or may be used by user

1 Timer1 Timer32_1

2 Timer2 Timer16_0

3 Timer3 Timer16_1
WAIT

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

22 of 34

Fig 11. Porting 32 to 16 bits timer – time in microseconds

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

23 of 34

Fig 12. Porting 32 to 16 bits timer – time in miliseconds

3.1.8 Global Variables
LPC1769 and LPC1227 are different types of MCU. However both are ARM Cortex core.
The project building is the same or very similar. Main difference is in FLASH and RAM
memory amount. Next Table 2 describes these differences.

Table 2. RAM and FLASH amount overview
 FLASH RAM
LPC1227 128 kB 8 kB

LPC1769 512 kB 64kB

Whole source code uses up to 80kB of FLASH memory after project build (for both
MCUs). The FLASH memory is sufficient.

In case the Passive Target example is built for the LPC1769 MCU the RAM usage is
10,5kB and there is not calculated space which is used during operation mode where
dynamically allocated variables and buffers also spend some space of RAM. Finally the
RAM usage is about 11kB. For that reason we have to focus on reduction of global static
variables (buffers), which are allocated in the RAM memory.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

24 of 34

3.1.8.1 Reduction of global buffers

There are follow global variables in the Passive Target project used by LPC1769 MCU.
These variables can be resized to keep full functionality of the application. All the
variables represent data buffers.

Server buffers

Here are data buffers of HAL and LLCP and their size can be reduced in following way:

Before reduction:
1 uint8_t bHalBufferTx[400]; /**< HAL TX buffer */
2 uint8_t bHalBufferRx[400]; /**< HAL RX buffer */
3 uint8_t bRxBuffer[256]; /**< LLCP TX buffer */
4 uint8_t bTxBuffer[256]; /**< LLCP RX buffer */

After reduction:
5 uint8_t bHalBufferTx[128]; /**< HAL TX buffer */
6 uint8_t bHalBufferRx[128]; /**< HAL RX buffer */
7 uint8_t bRxBuffer[128]; /**< LLCP TX buffer */
8 uint8_t bTxBuffer[256]; /**< LLCP RX buffer */

Here are data buffers for responses transmission (answer of server for client request).

Before reduction:
9 uint8_t PutResponseBuffer[1500]; /**< PUT Response Buffer */
10 uint8_t GetResponseBuffer[256]; /**< GET Response Buffer */

After reduction:
11 uint8_t PutResponseBuffer[128]; /**< PUT Response Buffer */
12 uint8_t GetResponseBuffer[128]; /**< GET Response Buffer */

Here are data buffers storing and internal handling with transmitted NDEF messages.

Before reduction:
13 uint8_t workingBuffer[256]; /**< Server Working Buffer (MIU * RW) + MIU */
14 uint8_t snepWorkingBuffer[128]; /**< Working Data Buffer */
15 uint8_t sConnWorkingBuffer[128]; /**< Connection Data Buffer */
16 uint8_t pChunkingBuffer[128]; /**< Chunking Data Buffer */
17 uint8_t TransferData[2048] = {0}; /**< Data Inbox Buffer */
18 uint8_t gSnepPacketBuffer[1100]; /**< SNEP Packet Data Buffer */

After reduction:
19 uint8_t workingBuffer[128]; /**< Server Working Buffer (MIU * RW) + MIU */
20 uint8_t snepWorkingBuffer[128]; /**< Working Data Buffer */
21 uint8_t sConnWorkingBuffer[128]; /**< Connection Data Buffer */
22 uint8_t pChunkingBuffer[128]; /**< Chunking Data Buffer */
23 uint8_t TransferData[1024] = {0}; /**< Data Inbox Buffer */
24 uint8_t gSnepPacketBuffer[256]; /**< SNEP Packet Data Buffer */

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

25 of 34

Client Selected Variables

Here are data buffers of HAL and LLCP and their size can be reduced as follows:

Before reduction:
25 uint8_t bHalBufferTx[400]; /**< HAL TX buffer */
26 uint8_t bHalBufferRx[400]; /**< HAL RX buffer */
27 uint8_t bRxBuffer[256]; /**< LLCP TX buffer */
28 uint8_t bTxBuffer[256]; /**< LLCP RX buffer */

After reduction:
29 uint8_t bHalBufferTx[128]; /**< HAL TX buffer */
30 uint8_t bHalBufferRx[128]; /**< HAL RX buffer */
31 uint8_t bRxBuffer[128]; /**< LLCP TX buffer */
32 uint8_t bTxBuffer[256]; /**< LLCP RX buffer */

Here are data buffers for responses transmission (answer of server for client request).

Before reduction:
33 uint8_t PutResponseBuffer[256]; /**< PUT Response Buffer */
34 uint8_t GetResponseBuffer[1500]; /**< GET Response Buffer */

After reduction:
35 uint8_t PutResponseBuffer[128]; /**< PUT Response Buffer */
36 uint8_t GetResponseBuffer[128]; /**< GET Response Buffer */

Here are data buffers storing and internally handling with transmitted NDEF messages.

Before reduction:
37 uint8_t WorkingBuffer[256]; /**< Server Working Buffer (MIU * RW) + MIU */
38 uint8_t ResponseBuffer[1500]; /**< Response Buffer */
39 uint8_t pChunkingBuffer[128]; /**< Chunking Buffer of size RemoteMiu or MIU */
40 uint8_t gSnepPacketBuffer[1100]; /**< SNEP Packet Data Buffer*/

After reduction:
41 uint8_t WorkingBuffer[256]; /**< Server Working Buffer (MIU * RW) + MIU */
42 uint8_t ResponseBuffer[256]; /**< Response Buffer */
43 uint8_t pChunkingBuffer[128]; /**< Chunking Buffer of size RemoteMiu or MIU */
44 uint8_t gSnepPacketBuffer[256]; /**< SNEP Packet Data Buffer*/

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

26 of 34

3.1.9 Reduced Variables in Practice
There have been performed lots of tests to setup optimal size of the buffers mentioned in
chapter 3.1.8.1. Here is a summary.

Passive Target Server

Complete Passive Target Server example built requires 6874 Bytes of RAM. Only
Server application requires 2718 Bytes from this space. There remains about 160
Bytes of RAM for other usage in the application.

Passive Target Client

Complete Passive Target Client example built requires 6082 Bytes of RAM. Only Client
application requires 2482 Bytes from this space. There remains about 600 Bytes of
RAM for other usage in the application.

All these values have been taken from LPCXpresso IDE environment after project build
and during full operation mode.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

27 of 34

4. Build configuration

4.1 Hardware Development Kits
Passive Target software example is directly designed (including the porting) for the
following hardware development tools:

LPCXpresso LPC1769 microcontroller development kit [5]

LPCXpresso LPC1200 microcontroller development kit [6]

Blueboard PNEV512B v1.5 contactless card reader board [3]

4.2 Software Development tools
Passive Target software example has been developed using:

LPCXpresso v6.0.4_159 IDE [7]

4.3 Debug Build Configuration
Passive Target example is built directly under the debug mode. This mode allows a user
to print out debug messages on console, optimize and reduce code size, debug process
including a detailed view on all registers and peripherals, view a memory.

Tool Settings of the IDE must be set as follows:

Common Symbols (LPC1227 and LPC1769)

DEBUG - allows use debug mode and messages

__USE_CMSIS - using CMSIS drivers support for the core and whole
registers set of the MCU.

Basic symbols are commonly added.

Symbols of LPC1227:

__DISABLE_WATCHDOG - watchdog module must be disabled for debug
configuration.

NOTE: LPC1227 is industries oriented MCU and watch dog timer is allowed by default.

Optimization

-O1 This is first level of optimization and the code size reduction
is sufficient for correct application operation.

NOTE: Higher optimization (eg. –O2 or -Os) caused linker troubles. It means during
operations directly for LPC1227 MCU fatal error has occurred and the software has been
interrupted from running. The same fail occurred also on the –Os which is optimization
for size.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

28 of 34

Debugging

Maximum the maximal debug support

-g3 Level 3 includes extra information, such as all the macro
definitions present in the program.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

29 of 34

5. Abbreviations

Table 3. Abbreviations
Acronym Description
ATQA Answer To Request, type A

API Application Programming Interface

BAL Bus Abstraction Layer

CMSIS Cortex Microcontroller Software Interface Standard

FLASH an electronic non-volatile computer storage medium

GPIO General Purpose Input Output

HAL Hardware Abstraction Layer

HW Hardware

IC Integrated Circuit

IRQ Interrupt Request

KUC Key Usage Counter

LLCP Logical Link Control Protocol

LTO Link Timeout

MCU Microcontroller Unit

MF MIFARE

MFC MIFARE Classic

MFUL MIFARE Ultralight

MIME Multipurpose Internet Mail Extensions

NAD Node Address

NAK Negative Acknowledge

NDEF NFC Data Exchange Format

NFC Near Field Communication

OSAL Operating System Abstraction Layer

P2P Peer to Peer

PAL Protocol Abstraction Layer

RAM Random Access Memory

RTD NFC Record Type Definition

SAK Select Acknowledge, type A

SAM Secure Access Module

SNEP Simple NDEF Exchange Protocol

SPI Serial Peripheral Interface

SW Software

UID Unique Identifier

URI Uniform Resource Identifier

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

30 of 34

6. References
[1] NXP Reader Library - link to the software package of the library

http://www.nxp.com/documents/software/200312.zip

[2] User Manual P2P Library CLRC663, PN512
http://www.nxp.com/documents/user_manual/UM10721.pdf

[3] Blueboard PNEV512B – evaluation board
http://www.nxp.com/demoboard/PNEV512B.html

[4] Blueboard CLEV663B – evaluation board
http://www.nxp.com/demoboard/CLEV663B.html

[5] LPCXpresso 1769 – low-cost development platform
http://www.nxp.com/demoboard/OM13000.html

[6] LPCXpresso 1200 – low-cost development platform
http://www.nxp.com/demoboard/CLEV663B.html

[7] LPCXpresso IDE - software development tool
www.nxp.com/redirect/lpcware.com/lpcxpresso

[8] SNEP overview and specification
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots

[9] NDEF overview and specification
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots

[10] RTD overview and specification
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots

[11] LLCP overview and specification
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots

[12] SNEP Validation Specification is in preliminary version and no public release is
available

[13] Passive Target – software application

[14] CMSIS – microcontroller software interface

http://www.nxp.com/redirect/lpcware.com/content/faq/lpcxpresso/cmsis-support

http://www.nxp.com/redirect/arm.com/products/processors/cortex-m/cortex-
microcontroller-software-interface-standard.php

http://www.nxp.com/documents/software/200312.zip
http://www.nxp.com/documents/user_manual/UM10721.pdf
http://www.nxp.com/demoboard/PNEV512B.html
http://www.nxp.com/demoboard/CLEV663B.html
http://www.nxp.com/demoboard/OM13000.html
http://www.nxp.com/demoboard/CLEV663B.html
http://www.nxp.com/redirect/lpcware.com/lpcxpresso
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots
http://www.nxp.com/redirect/members.nfc-forum.org/specs/spec_list/prots
http://www.nxp.com/redirect/lpcware.com/content/faq/lpcxpresso/cmsis-support
http://www.nxp.com/redirect/arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.nxp.com/redirect/arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

31 of 34

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Licenses
Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481
does not convey an implied license under any patent right infringed by
implementation of any of those standards.

7.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

32 of 34

8. List of figures

Fig 1. Main-Loop ... 7
Fig 2. Client Discovery-Loop 8
Fig 3. SNEP Client Demo ... 9
Fig 4. Close LLCP for Client 10
Fig 5. Server Discovery-Loop 11
Fig 6. SNEP Server Demo .. 12
Fig 7. Close LLCP for Server 12
Fig 8. Project structure .. 13
Fig 9. MCU library selection 14
Fig 10. MCU settings .. 15
Fig 11. Porting 32 to 16 bits timer – time in

microseconds .. 22
Fig 12. Porting 32 to 16 bits timer – time in

miliseconds ... 23

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

AN11583 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 11 August 2014
302310

33 of 34

9. List of tables

Table 1. Timers naming and usage............................... 21
Table 2. RAM and FLASH amount overview 23
Table 3. Abbreviations .. 29

NXP Semiconductors AN11583
 Guide about how to port the Passive Target example to another MCU

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 August 2014
302310

Document identifier: AN11583

10. Contents

1. Introduction ... 3
2. Application description....................................... 4
2.1 Overview .. 4
2.1.1 SNEP Overview ... 4
2.1.2 Example Setting Overview 4
2.1.2.1 Set Server or Client .. 4
2.1.2.2 SNEP Server Service Name 4
2.1.3 SNEP Server capabilities 5
2.1.4 SNEP Client capabilities 5
2.2 Passive Target Example Overview 7
2.2.1 Main-Loop Overview .. 7
2.2.2 SNEP Client Overview 8
2.2.3 SNEP Server Overview 10
2.2.4 Software Structure ... 13
3. Application Porting ... 16
3.1 Overview .. 16
3.1.1 BAL .. 16
3.1.2 OSAL ... 18
3.1.3 MCU drivers ... 20
3.1.4 Hardware module ... 20
3.1.5 Timers overview ... 20
3.1.6 Usage of the timers .. 20
3.1.7 Timers Porting .. 21
3.1.8 Global Variables ... 23
3.1.8.1 Reduction of global buffers............................... 24
3.1.9 Reduced Variables in Practice 26
4. Build configuration ... 27
4.1 Hardware Development Kits............................. 27
4.2 Software Development tools 27
4.3 Debug Build Configuration 27
5. Abbreviations .. 29
6. References ... 30
7. Legal information .. 31
7.1 Definitions .. 31
7.2 Disclaimers... 31
7.3 Licenses ... 31
7.4 Trademarks .. 31
8. List of figures ... 32
9. List of tables .. 33
10. Contents ... 34

	1. Introduction
	2. Application description
	2.1 Overview
	2.1.1 SNEP Overview
	Session Establishment:
	Data Exchange:
	Session Release:

	2.1.2 Example Setting Overview
	2.1.2.1 Set Server or Client
	2.1.2.2 SNEP Server Service Name
	Default Server
	Non Default Server

	2.1.3 SNEP Server capabilities
	2.1.4 SNEP Client capabilities

	2.2 Passive Target Example Overview
	2.2.1 Main-Loop Overview
	2.2.2 SNEP Client Overview
	2.2.3 SNEP Server Overview
	2.2.4 Software Structure

	3. Application Porting
	3.1 Overview
	3.1.1 BAL
	Example how to port BAL functions

	3.1.2 OSAL
	Example how to port OSAL functions

	3.1.3 MCU drivers
	3.1.4 Hardware module
	3.1.5 Timers overview
	3.1.6 Usage of the timers
	3.1.7 Timers Porting
	3.1.8 Global Variables
	3.1.8.1 Reduction of global buffers
	Server buffers
	Client Selected Variables

	3.1.9 Reduced Variables in Practice
	Passive Target Server
	Passive Target Client

	4. Build configuration
	4.1 Hardware Development Kits
	4.2 Software Development tools
	4.3 Debug Build Configuration

	5. Abbreviations
	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Licenses
	7.4 Trademarks

	8. List of figures
	9. List of tables
	10. Contents

